Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.01805
Cited By
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
3 December 2020
Ricards Marcinkevics
Julia E. Vogt
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretability and Explainability: A Machine Learning Zoo Mini-tour"
50 / 53 papers shown
Title
Combining Bayesian Inference and Reinforcement Learning for Agent Decision Making: A Review
Chengmin Zhou
Ville Kyrki
P. Fränti
Laura Ruotsalainen
BDL
AI4CE
42
0
0
12 May 2025
Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
Yunkai Dang
Kaichen Huang
Jiahao Huo
Yibo Yan
S. Huang
...
Kun Wang
Yong Liu
Jing Shao
Hui Xiong
Xuming Hu
LRM
101
14
0
03 Dec 2024
From Logits to Hierarchies: Hierarchical Clustering made Simple
Emanuele Palumbo
Moritz Vandenhirtz
Alain Ryser
Imant Daunhawer
Julia E. Vogt
26
1
0
10 Oct 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
67
28
0
30 Aug 2024
Introducing Ínside' Out of Distribution
Teddy Lazebnik
31
1
0
05 Jul 2024
Unifying Interpretability and Explainability for Alzheimer's Disease Progression Prediction
Raja Farrukh Ali
Stephanie Milani
John Woods
Emmanuel Adenij
Ayesha Farooq
Clayton Mansel
Jeffrey Burns
William Hsu
33
0
0
11 Jun 2024
P-NAL: an Effective and Interpretable Entity Alignment Method
Chuanhao Xu
Jingwei Cheng
Fu Zhang
52
1
0
18 Apr 2024
Interpretability in Symbolic Regression: a benchmark of Explanatory Methods using the Feynman data set
Guilherme Seidyo Imai Aldeia
Fabrício Olivetti de França
21
10
0
08 Apr 2024
The Probabilities Also Matter: A More Faithful Metric for Faithfulness of Free-Text Explanations in Large Language Models
Noah Y. Siegel
Oana-Maria Camburu
N. Heess
Maria Perez-Ortiz
20
8
0
04 Apr 2024
Intrinsic Subgraph Generation for Interpretable Graph based Visual Question Answering
Pascal Tilli
Ngoc Thang Vu
33
1
0
26 Mar 2024
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
Taking Class Imbalance Into Account in Open Set Recognition Evaluation
Joanna Komorniczak
Pawel Ksieniewicz
25
0
0
09 Feb 2024
Experimental Insights Towards Explainable and Interpretable Pedestrian Crossing Prediction
Angie Nataly Melo
Carlota Salinas
Miguel Ángel Sotelo
30
3
0
05 Dec 2023
MetaSymNet: A Dynamic Symbolic Regression Network Capable of Evolving into Arbitrary Formulations
Yanjie Li
Weijun Li
Lina Yu
Min Wu
Jinyi Liu
Wenqiang Li
Meilan Hao
Shu Wei
Yusong Deng
18
1
0
13 Nov 2023
Is Machine Learning Unsafe and Irresponsible in Social Sciences? Paradoxes and Reconsidering from Recidivism Prediction Tasks
Jianhong Liu
D. Li
10
1
0
11 Nov 2023
Symbolic Regression as Feature Engineering Method for Machine and Deep Learning Regression Tasks
Assaf Shmuel
Oren Glickman
Teddy Lazebnik
38
9
0
10 Nov 2023
Massively-Parallel Heat Map Sorting and Applications To Explainable Clustering
Sepideh Aghamolaei
Mohammad Ghodsi
16
0
0
14 Sep 2023
Trustworthy Representation Learning Across Domains
Ronghang Zhu
Dongliang Guo
Daiqing Qi
Zhixuan Chu
Xiang Yu
Sheng R. Li
FaML
AI4TS
33
2
0
23 Aug 2023
R-Cut: Enhancing Explainability in Vision Transformers with Relationship Weighted Out and Cut
Yingjie Niu
Ming Ding
Maoning Ge
Robin Karlsson
Yuxiao Zhang
K. Takeda
ViT
26
3
0
18 Jul 2023
Neurosymbolic AI for Reasoning on Biomedical Knowledge Graphs
L. Delong
Ramon Fernández Mir
Zonglin Ji
Fiona Niamh Coulter Smith
Jacques D. Fleuriot
35
1
0
17 Jul 2023
Improving Explainability of Disentangled Representations using Multipath-Attribution Mappings
Lukas Klein
João B. S. Carvalho
Mennatallah El-Assady
Paolo Penna
J. M. Buhmann
Paul F. Jaeger
16
4
0
15 Jun 2023
Sanity Checks for Saliency Methods Explaining Object Detectors
Deepan Padmanabhan
Paul G. Plöger
Octavio Arriaga
Matias Valdenegro-Toro
FAtt
AAML
XAI
18
2
0
04 Jun 2023
torchosr -- a PyTorch extension package for Open Set Recognition models evaluation in Python
Joanna Komorniczak
Pawel Ksieniewicz
3DV
10
3
0
16 May 2023
MLHOps: Machine Learning for Healthcare Operations
Kristoffer Larsen
Vallijah Subasri
A. Krishnan
Cláudio Tinoco Mesquita
Diana Paez
Laleh Seyyed-Kalantari
Amalia Peix
LM&MA
AI4TS
VLM
27
2
0
04 May 2023
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing
M. Hasan
Moloud Abdar
Abbas Khosravi
U. Aickelin
Pietro Lio'
Ibrahim Hossain
Ashikur Rahman
Saeid Nahavandi
32
4
0
11 Apr 2023
A Scalable Space-efficient In-database Interpretability Framework for Embedding-based Semantic SQL Queries
P. Kudva
R. Bordawekar
Apoorva Nitsure
12
0
0
23 Feb 2023
Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
L. Delong
Ramon Fernández Mir
Jacques D. Fleuriot
NAI
28
12
0
14 Feb 2023
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
Ryan Thompson
Amir Dezfouli
Robert Kohn
31
4
0
02 Feb 2023
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
24
18
0
22 Jan 2023
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data
Atif Khan
C. Lawless
Amy Vincent
Satish Pilla
S. Ramesh
A. Mcgough
33
0
0
31 Oct 2022
Explanation Method for Anomaly Detection on Mixed Numerical and Categorical Spaces
Iñigo López-Riobóo Botana
Carlos Eiras-Franco
Julio César Hernández Castro
Amparo Alonso-Betanzos
19
0
0
09 Sep 2022
Interpretable Time Series Clustering Using Local Explanations
Ozan Ozyegen
Nicholas Prayogo
Mucahit Cevik
Ayse Basar
FAtt
AI4TS
16
1
0
01 Aug 2022
From Correlation to Causation: Formalizing Interpretable Machine Learning as a Statistical Process
Lukas Klein
Mennatallah El-Assady
Paul F. Jäger
CML
11
1
0
11 Jul 2022
A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data
Magdalena Wysocka
Oskar Wysocki
Marie Zufferey
Dónal Landers
André Freitas
AI4CE
48
28
0
02 Jul 2022
Think About the Stakeholders First! Towards an Algorithmic Transparency Playbook for Regulatory Compliance
Andrew Bell
O. Nov
Julia Stoyanovich
27
26
0
10 Jun 2022
Can Requirements Engineering Support Explainable Artificial Intelligence? Towards a User-Centric Approach for Explainability Requirements
Umm-e-Habiba
Justus Bogner
Stefan Wagner
XAI
16
13
0
03 Jun 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
30
26
0
16 May 2022
System Cards for AI-Based Decision-Making for Public Policy
Furkan Gursoy
I. Kakadiaris
MLAU
21
14
0
01 Mar 2022
Testing Granger Non-Causality in Panels with Cross-Sectional Dependencies
Lenon Minorics
Ali Caner Türkmen
D. Kernert
Patrick Bloebaum
Laurent Callot
Dominik Janzing
14
1
0
23 Feb 2022
Discrete and continuous representations and processing in deep learning: Looking forward
Ruben Cartuyvels
Graham Spinks
Marie-Francine Moens
OCL
30
20
0
04 Jan 2022
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
36
20
0
29 Dec 2021
How to Find a Good Explanation for Clustering?
Sayan Bandyapadhyay
F. Fomin
P. Golovach
W. Lochet
Nidhi Purohit
Kirill Simonov
24
33
0
13 Dec 2021
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
34
14
0
16 Oct 2021
FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging
Karim Lekadira
Richard Osuala
C. Gallin
Noussair Lazrak
Kaisar Kushibar
...
Nickolas Papanikolaou
Zohaib Salahuddin
Henry C. Woodruff
Philippe Lambin
L. Martí-Bonmatí
AI4TS
68
56
0
20 Sep 2021
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lió
Marco Maggini
S. Melacci
35
69
0
11 Aug 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaML
AILaw
OOD
27
21
0
20 Jul 2021
An Imprecise SHAP as a Tool for Explaining the Class Probability Distributions under Limited Training Data
Lev V. Utkin
A. Konstantinov
Kirill Vishniakov
FAtt
23
5
0
16 Jun 2021
Context-Sensitive Visualization of Deep Learning Natural Language Processing Models
A. Dunn
Diana Inkpen
Razvan Andonie
14
8
0
25 May 2021
Ensembles of Random SHAPs
Lev V. Utkin
A. Konstantinov
FAtt
16
20
0
04 Mar 2021
1
2
Next