ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00925
  4. Cited By
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning

SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning

2 December 2020
Zhuowei Wang
Jing Jiang
Bo Han
Lei Feng
Bo An
Gang Niu
Guodong Long
    NoLa
ArXivPDFHTML

Papers citing "SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning"

21 / 21 papers shown
Title
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with
  Noisy Labels
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels
Zhuowei Wang
Dinesh Manocha
Guodong Long
Bo Han
Jing Jiang
FedML
70
19
0
20 May 2022
Federated Learning for Privacy-Preserving Open Innovation Future on
  Digital Health
Federated Learning for Privacy-Preserving Open Innovation Future on Digital Health
Guodong Long
Tao Shen
Yue Tan
Leah Gerrard
Allison Clarke
Jing Jiang
FedML
65
46
0
24 Aug 2021
Anomaly Detection in Dynamic Graphs via Transformer
Anomaly Detection in Dynamic Graphs via Transformer
Yixin Liu
Shirui Pan
Yu Guang Wang
Fei Xiong
Liang Wang
Qingfeng Chen
V. C. Lee
44
94
0
18 Jun 2021
CReST: A Class-Rebalancing Self-Training Framework for Imbalanced
  Semi-Supervised Learning
CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning
Chen Wei
Kihyuk Sohn
Clayton Mellina
Alan Yuille
Fan Yang
CLL
59
259
0
18 Feb 2021
Confusable Learning for Large-class Few-Shot Classification
Confusable Learning for Large-class Few-Shot Classification
Bing Li
Bo Han
Zhuowei Wang
Jing Jiang
Guodong Long
40
2
0
06 Nov 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
43
438
0
24 Jun 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
68
1,021
0
18 Feb 2020
SELF: Learning to Filter Noisy Labels with Self-Ensembling
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
65
314
0
04 Oct 2019
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Eric Arazo
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
82
826
0
08 Aug 2019
Deep Self-Learning From Noisy Labels
Deep Self-Learning From Noisy Labels
Jiangfan Han
Ping Luo
Xiaogang Wang
NoLa
46
280
0
06 Aug 2019
Understanding and Utilizing Deep Neural Networks Trained with Noisy
  Labels
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
45
383
0
13 May 2019
Unsupervised Data Augmentation for Consistency Training
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
101
2,306
0
29 Apr 2019
Label Propagation for Deep Semi-supervised Learning
Label Propagation for Deep Semi-supervised Learning
Ahmet Iscen
Giorgos Tolias
Yannis Avrithis
Ondřej Chum
SSL
61
622
0
09 Apr 2019
Learning to Learn from Noisy Labeled Data
Learning to Learn from Noisy Labeled Data
Junnan Li
Yongkang Wong
Qi Zhao
Mohan Kankanhalli
NoLa
37
331
0
13 Dec 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
119
1,419
0
24 Mar 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
157
8,807
0
25 Aug 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
95
1,801
0
16 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
754
11,793
0
09 Mar 2017
Temporal Ensembling for Semi-Supervised Learning
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
162
2,543
0
07 Oct 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
222
8,030
0
13 Aug 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
276
10,149
0
16 Mar 2016
1