Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.00893
Cited By
Evaluating Explanations: How much do explanations from the teacher aid students?
1 December 2020
Danish Pruthi
Rachit Bansal
Bhuwan Dhingra
Livio Baldini Soares
Michael Collins
Zachary Chase Lipton
Graham Neubig
William W. Cohen
FAtt
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluating Explanations: How much do explanations from the teacher aid students?"
33 / 33 papers shown
Title
Explanation Regularisation through the Lens of Attributions
Pedro Ferreira
Wilker Aziz
Ivan Titov
48
1
0
23 Jul 2024
Retrieved In-Context Principles from Previous Mistakes
Hao Sun
Yong-jia Jiang
Bo Wang
Yingyan Hou
Yan Zhang
Pengjun Xie
Fei Huang
63
1
0
08 Jul 2024
CAVE: Controllable Authorship Verification Explanations
Sahana Ramnath
Kartik Pandey
Elizabeth Boschee
Xiang Ren
66
2
0
24 Jun 2024
Evaluating Saliency Explanations in NLP by Crowdsourcing
Xiaotian Lu
Jiyi Li
Zhen Wan
Xiaofeng Lin
Koh Takeuchi
Hisashi Kashima
XAI
FAtt
LRM
34
1
0
17 May 2024
ALMANACS: A Simulatability Benchmark for Language Model Explainability
Edmund Mills
Shiye Su
Stuart J. Russell
Scott Emmons
56
7
0
20 Dec 2023
Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies
Jonas Teufel
Luca Torresi
Pascal Friederich
FAtt
34
1
0
25 May 2023
Computational modeling of semantic change
Nina Tahmasebi
Haim Dubossarsky
38
6
0
13 Apr 2023
Training Language Models with Language Feedback at Scale
Jérémy Scheurer
Jon Ander Campos
Tomasz Korbak
Jun Shern Chan
Angelica Chen
Kyunghyun Cho
Ethan Perez
ALM
50
103
0
28 Mar 2023
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
26
8
0
23 Nov 2022
Large Language Models Can Self-Improve
Jiaxin Huang
S. Gu
Le Hou
Yuexin Wu
Xuezhi Wang
Hongkun Yu
Jiawei Han
ReLM
AI4MH
LRM
47
568
0
20 Oct 2022
Responsibility: An Example-based Explainable AI approach via Training Process Inspection
Faraz Khadivpour
Arghasree Banerjee
Matthew J. Guzdial
XAI
19
2
0
07 Sep 2022
FRAME: Evaluating Rationale-Label Consistency Metrics for Free-Text Rationales
Aaron Chan
Shaoliang Nie
Liang Tan
Xiaochang Peng
Hamed Firooz
Maziar Sanjabi
Xiang Ren
52
9
0
02 Jul 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
24
24
0
05 Jun 2022
ExSum: From Local Explanations to Model Understanding
Yilun Zhou
Marco Tulio Ribeiro
J. Shah
FAtt
LRM
29
25
0
30 Apr 2022
Training Language Models with Language Feedback
Jérémy Scheurer
Jon Ander Campos
Jun Shern Chan
Angelica Chen
Kyunghyun Cho
Ethan Perez
ALM
48
48
0
29 Apr 2022
Learning to Scaffold: Optimizing Model Explanations for Teaching
Patrick Fernandes
Marcos Vinícius Treviso
Danish Pruthi
André F. T. Martins
Graham Neubig
FAtt
30
22
0
22 Apr 2022
Interpreting Language Models with Contrastive Explanations
Kayo Yin
Graham Neubig
MILM
23
78
0
21 Feb 2022
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations
Siddhant Arora
Danish Pruthi
Norman M. Sadeh
William W. Cohen
Zachary Chase Lipton
Graham Neubig
FAtt
40
38
0
17 Dec 2021
UNIREX: A Unified Learning Framework for Language Model Rationale Extraction
Aaron Chan
Maziar Sanjabi
Lambert Mathias
L Tan
Shaoliang Nie
Xiaochang Peng
Xiang Ren
Hamed Firooz
43
42
0
16 Dec 2021
The Irrationality of Neural Rationale Models
Yiming Zheng
Serena Booth
J. Shah
Yilun Zhou
35
16
0
14 Oct 2021
Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates
Xiaochuang Han
Yulia Tsvetkov
TDI
31
30
0
07 Oct 2021
Diagnostics-Guided Explanation Generation
Pepa Atanasova
J. Simonsen
Christina Lioma
Isabelle Augenstein
LRM
FAtt
40
6
0
08 Sep 2021
Counterfactual Evaluation for Explainable AI
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
CML
38
14
0
05 Sep 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
31
17
0
09 Jun 2021
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
29
140
0
17 May 2021
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin
Zhouxing Shi
Cho-Jui Hsieh
Kai-Wei Chang
FAtt
19
33
0
18 Apr 2021
Supervising Model Attention with Human Explanations for Robust Natural Language Inference
Joe Stacey
Yonatan Belinkov
Marek Rei
30
45
0
16 Apr 2021
Efficient Explanations from Empirical Explainers
Robert Schwarzenberg
Nils Feldhus
Sebastian Möller
FAtt
32
9
0
29 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
28
57
0
25 Feb 2021
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Peter Hase
Joey Tianyi Zhou
XAI
25
87
0
03 Feb 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Joey Tianyi Zhou
Caiming Xiong
TDI
41
102
0
31 Dec 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
202
201
0
22 Mar 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,696
0
28 Feb 2017
1