Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.00740
Cited By
MYSTIKO : : Cloud-Mediated, Private, Federated Gradient Descent
1 December 2020
K.R. Jayaram
Archit Verma
A. Verma
Gegi Thomas
Colin Sutcher-Shepard
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MYSTIKO : : Cloud-Mediated, Private, Federated Gradient Descent"
7 / 7 papers shown
Title
HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning
Runhua Xu
Nathalie Baracaldo
Yi Zhou
Ali Anwar
Heiko Ludwig
FedML
35
288
0
12 Dec 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
56
2,185
0
21 Jun 2019
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
44
889
0
07 Dec 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
109
490
0
27 May 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
200
4,075
0
18 Oct 2016
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
164
6,170
0
15 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
152
6,049
0
01 Jul 2016
1