ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.14826
  4. Cited By
Revisiting Rainbow: Promoting more Insightful and Inclusive Deep
  Reinforcement Learning Research

Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research

20 November 2020
J. Obando-Ceron
Pablo Samuel Castro
    OffRL
ArXivPDFHTML

Papers citing "Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research"

11 / 61 papers shown
Title
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
59
637
0
30 Aug 2021
When does loss-based prioritization fail?
When does loss-based prioritization fail?
Nie Hu
Xinyu Hu
Rosanne Liu
Sara Hooker
J. Yosinski
282
8
0
16 Jul 2021
Tuning Mixed Input Hyperparameters on the Fly for Efficient Population
  Based AutoRL
Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL
Jack Parker-Holder
Vu Nguyen
Shaan Desai
Stephen J. Roberts
43
16
0
30 Jun 2021
Distributional Reinforcement Learning with Unconstrained Monotonic
  Neural Networks
Distributional Reinforcement Learning with Unconstrained Monotonic Neural Networks
Thibaut Théate
Antoine Wehenkel
Adrien Bolland
Gilles Louppe
D. Ernst
16
7
0
06 Jun 2021
MICo: Improved representations via sampling-based state similarity for
  Markov decision processes
MICo: Improved representations via sampling-based state similarity for Markov decision processes
Pablo Samuel Castro
Tyler Kastner
Prakash Panangaden
Mark Rowland
43
35
0
03 Jun 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
24
52
0
11 May 2021
On Lottery Tickets and Minimal Task Representations in Deep
  Reinforcement Learning
On Lottery Tickets and Minimal Task Representations in Deep Reinforcement Learning
Marc Aurel Vischer
R. T. Lange
Henning Sprekeler
OOD
UQCV
OffRL
25
23
0
04 May 2021
Improving Computational Efficiency in Visual Reinforcement Learning via
  Stored Embeddings
Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings
Lili Chen
Kimin Lee
A. Srinivas
Pieter Abbeel
OffRL
16
11
0
04 Mar 2021
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Quentin Delfosse
P. Schramowski
Martin Mundt
Alejandro Molina
Kristian Kersting
37
14
0
18 Feb 2021
From Eye-blinks to State Construction: Diagnostic Benchmarks for Online
  Representation Learning
From Eye-blinks to State Construction: Diagnostic Benchmarks for Online Representation Learning
Banafsheh Rafiee
Zaheer Abbas
Sina Ghiassian
Raksha Kumaraswamy
R. Sutton
Elliot A. Ludvig
Adam White
OffRL
19
17
0
09 Nov 2020
Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy
  Improvement
Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy Improvement
Samuel Neumann
Sungsu Lim
A. Joseph
Yangchen Pan
Adam White
Martha White
20
7
0
22 Oct 2018
Previous
12