Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.14004
Cited By
Assessing Post-Disaster Damage from Satellite Imagery using Semi-Supervised Learning Techniques
24 November 2020
Jihyeon Janel Lee
Joseph Z. Xu
Kihyuk Sohn
W. Lu
David Berthelot
Izzeddin Gur
Pranav Khaitan
Ke-Wei
Ke Huang
Kyriacos M. Koupparis
Bernhard Kowatsch
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Assessing Post-Disaster Damage from Satellite Imagery using Semi-Supervised Learning Techniques"
6 / 6 papers shown
Title
An Open-Source Tool for Mapping War Destruction at Scale in Ukraine using Sentinel-1 Time Series
Olivier Dietrich
T. Peters
Vivien Sainte Fare Garnot
Valerie Sticher
Thao T-T Whelan
Konrad Schindler
Jan Dirk Wegner
103
2
0
21 Feb 2025
CRASAR-U-DROIDs: A Large Scale Benchmark Dataset for Building Alignment and Damage Assessment in Georectified sUAS Imagery
Thomas Manzini
Priyankari Perali
Raisa Karnik
Robin Murphy
43
3
0
24 Jul 2024
Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning
Yanbing Bai
Xinyi Wu
Lai Xu
Jihan Pei
Erick Mas
Shunichi Koshimura
36
1
0
28 May 2024
Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data
Tarun Kalluri
Jihyeon Janel Lee
Kihyuk Sohn
Sahil Singla
Manmohan Chandraker
Joseph Z. Xu
Jeremiah Liu
49
1
0
22 May 2024
Disaster mapping from satellites: damage detection with crowdsourced point labels
Danil Kuzin
Olga Isupova
Brooke D. Simmons
S. Reece
29
8
0
05 Nov 2021
Building Damage Mapping with Self-PositiveUnlabeled Learning
J. Xia
Naoto Yokoya
B. Adriano
19
3
0
04 Nov 2021
1