ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12646
  4. Cited By
Quantifying Explainers of Graph Neural Networks in Computational
  Pathology

Quantifying Explainers of Graph Neural Networks in Computational Pathology

25 November 2020
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
    FAtt
ArXivPDFHTML

Papers citing "Quantifying Explainers of Graph Neural Networks in Computational Pathology"

43 / 43 papers shown
Title
Hierarchical Graph Representations in Digital Pathology
Hierarchical Graph Representations in Digital Pathology
Pushpak Pati
Guillaume Jaume
A. Foncubierta
Florinda Feroce
A. Anniciello
...
G. Botti
Jean-Philippe Thiran
Maria Frucci
O. Goksel
M. Gabrani
44
120
0
22 Feb 2021
On quantitative aspects of model interpretability
On quantitative aspects of model interpretability
An-phi Nguyen
María Rodríguez Martínez
43
114
0
15 Jul 2020
HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for
  Histopathological Image Classification
HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification
Pushpak Pati
Guillaume Jaume
Lauren Alisha Fernandes
A. Foncubierta
Florinda Feroce
...
G. Botti
O. Goksel
Jean-Philippe Thiran
Maria Frucci
M. Gabrani
59
69
0
01 Jul 2020
Towards Explainable Graph Representations in Digital Pathology
Towards Explainable Graph Representations in Digital Pathology
Guillaume Jaume
Pushpak Pati
A. Foncubierta-Rodríguez
Florinda Feroce
G. Scognamiglio
A. Anniciello
Jean-Philippe Thiran
O. Goksel
M. Gabrani
67
40
0
01 Jul 2020
Visualization for Histopathology Images using Graph Convolutional Neural
  Networks
Visualization for Histopathology Images using Graph Convolutional Neural Networks
M. Sureka
Abhijeet Patil
Deepak Anand
A. Sethi
FAtt
GNN
MedIm
45
36
0
16 Jun 2020
Data Efficient and Weakly Supervised Computational Pathology on Whole
  Slide Images
Data Efficient and Weakly Supervised Computational Pathology on Whole Slide Images
Ming Y. Lu
Drew F. K. Williamson
Tiffany Y. Chen
Richard J. Chen
Matteo Barbieri
Faisal Mahmood
86
1,308
0
20 Apr 2020
Representation Learning of Histopathology Images using Graph Neural
  Networks
Representation Learning of Histopathology Images using Graph Neural Networks
Mohammed Adnan
Shivam Kalra
Hamid R. Tizhoosh
OOD
39
99
0
16 Apr 2020
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and
  Genomic Features for Cancer Diagnosis and Prognosis
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis
Richard J. Chen
Ming Y. Lu
Jingwen Wang
Drew F. K. Williamson
S. Rodig
N. Lindeman
Faisal Mahmood
65
407
0
18 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
342
42,299
0
03 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
113
6,235
0
22 Oct 2019
Layerwise Relevance Visualization in Convolutional Text Graph
  Classifiers
Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
Robert Schwarzenberg
Marc Hübner
David Harbecke
Christoph Alt
Leonhard Hennig
FAtt
GNN
43
70
0
24 Sep 2019
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
Jiaqi Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng Zhang
AI4CE
GNN
259
753
0
03 Sep 2019
CGC-Net: Cell Graph Convolutional Network for Grading of Colorectal
  Cancer Histology Images
CGC-Net: Cell Graph Convolutional Network for Grading of Colorectal Cancer Histology Images
Yanning Zhou
S. Graham
Navid Alemi Koohbanani
Muhammad Shaban
Pheng-Ann Heng
Nasir M. Rajpoot
MedIm
68
173
0
03 Sep 2019
Resolving challenges in deep learning-based analyses of
  histopathological images using explanation methods
Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
Miriam Hagele
P. Seegerer
Sebastian Lapuschkin
M. Bockmayr
Wojciech Samek
Frederick Klauschen
K. Müller
Alexander Binder
89
161
0
15 Aug 2019
Histographs: Graphs in Histopathology
Histographs: Graphs in Histopathology
Shrey Gadiya
Deepak Anand
A. Sethi
GNN
46
70
0
14 Aug 2019
Explainability Techniques for Graph Convolutional Networks
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
158
268
0
31 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
125
1,314
0
10 Mar 2019
HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in
  Multi-Tissue Histology Images
HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images
S. Graham
Q. Vu
S. Raza
A. Azam
Yee Wah Tsang
J. T. Kwak
Nasir M. Rajpoot
70
1,022
0
16 Dec 2018
Metrics for Explainable AI: Challenges and Prospects
Metrics for Explainable AI: Challenges and Prospects
R. Hoffman
Shane T. Mueller
Gary Klein
Jordan Litman
XAI
72
725
0
11 Dec 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
208
7,623
0
01 Oct 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
256
2,140
0
22 Jun 2018
Towards computational fluorescence microscopy: Machine learning-based
  integrated prediction of morphological and molecular tumor profiles
Towards computational fluorescence microscopy: Machine learning-based integrated prediction of morphological and molecular tumor profiles
Alexander Binder
M. Bockmayr
Miriam Hagele
S. Wienert
Daniel Heim
...
M. Dietel
A. Hocke
C. Denkert
K. Müller
Frederick Klauschen
AI4CE
51
27
0
28 May 2018
Towards the Augmented Pathologist: Challenges of Explainable-AI in
  Digital Pathology
Towards the Augmented Pathologist: Challenges of Explainable-AI in Digital Pathology
Andreas Holzinger
Bernd Malle
Peter Kieseberg
P. Roth
Heimo Muller
Robert Reihs
K. Zatloukal
39
91
0
18 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
185
1,834
0
30 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
101
2,285
0
30 Oct 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
416
20,061
0
30 Oct 2017
A Formal Framework to Characterize Interpretability of Procedures
A Formal Framework to Characterize Interpretability of Procedures
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
29
19
0
12 Jul 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
442
15,179
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
415
7,431
0
04 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
366
3,776
0
28 Feb 2017
Visualizing Deep Neural Network Decisions: Prediction Difference
  Analysis
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
129
707
0
15 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
246
19,929
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
559
28,964
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
302
7,646
0
30 Jun 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
221
9,298
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.8K
193,426
0
10 Dec 2015
Explaining NonLinear Classification Decisions with Deep Taylor
  Decomposition
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
733
0
08 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
124
1,191
0
21 Sep 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
122
1,871
0
22 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
300
19,580
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.3K
149,842
0
22 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
255
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
443
15,861
0
12 Nov 2013
1