ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12430
9
146

SOE-Net: A Self-Attention and Orientation Encoding Network for Point Cloud based Place Recognition

24 November 2020
Yan Xia
Yusheng Xu
Shuang Li
Rui Wang
Juan Du
Daniel Cremers
Uwe Stilla
    3DPC
ArXivPDFHTML
Abstract

We tackle the problem of place recognition from point cloud data and introduce a self-attention and orientation encoding network (SOE-Net) that fully explores the relationship between points and incorporates long-range context into point-wise local descriptors. Local information of each point from eight orientations is captured in a PointOE module, whereas long-range feature dependencies among local descriptors are captured with a self-attention unit. Moreover, we propose a novel loss function called Hard Positive Hard Negative quadruplet loss (HPHN quadruplet), that achieves better performance than the commonly used metric learning loss. Experiments on various benchmark datasets demonstrate superior performance of the proposed network over the current state-of-the-art approaches. Our code is released publicly at https://github.com/Yan-Xia/SOE-Net.

View on arXiv
Comments on this paper