ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.11852
  4. Cited By
Policy Optimization for Markovian Jump Linear Quadratic Control:
  Gradient-Based Methods and Global Convergence

Policy Optimization for Markovian Jump Linear Quadratic Control: Gradient-Based Methods and Global Convergence

24 November 2020
Joao Paulo Jansch-Porto
Bin Hu
Geir Dullerud
ArXiv (abs)PDFHTML

Papers citing "Policy Optimization for Markovian Jump Linear Quadratic Control: Gradient-Based Methods and Global Convergence"

2 / 2 papers shown
Title
On the Optimization Landscape of Dynamic Output Feedback: A Case Study
  for Linear Quadratic Regulator
On the Optimization Landscape of Dynamic Output Feedback: A Case Study for Linear Quadratic Regulator
Jingliang Duan
Wenhan Cao
Yanggu Zheng
Lin Zhao
61
3
0
12 Sep 2022
Global Convergence Using Policy Gradient Methods for Model-free
  Markovian Jump Linear Quadratic Control
Global Convergence Using Policy Gradient Methods for Model-free Markovian Jump Linear Quadratic Control
Santanu Rathod
Manoj Bhadu
A. De
57
8
0
30 Nov 2021
1