ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.11305
  4. Cited By
Industrial object, machine part and defect recognition towards fully
  automated industrial monitoring employing deep learning. The case of
  multilevel VGG19

Industrial object, machine part and defect recognition towards fully automated industrial monitoring employing deep learning. The case of multilevel VGG19

23 November 2020
Ioannis D. Apostolopoulos
Mpesiana A. Tzani
ArXivPDFHTML

Papers citing "Industrial object, machine part and defect recognition towards fully automated industrial monitoring employing deep learning. The case of multilevel VGG19"

20 / 20 papers shown
Title
A Comprehensive Survey on Transfer Learning
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang
Zhiyuan Qi
Keyu Duan
Dongbo Xi
Yongchun Zhu
Hengshu Zhu
Hui Xiong
Qing He
157
4,395
0
07 Nov 2019
Learning Data Augmentation Strategies for Object Detection
Learning Data Augmentation Strategies for Object Detection
Barret Zoph
E. D. Cubuk
Golnaz Ghiasi
Nayeon Lee
Jonathon Shlens
Quoc V. Le
68
529
0
26 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
87
17,950
0
28 May 2019
Selective Feature Connection Mechanism: Concatenating Multi-layer CNN
  Features with a Feature Selector
Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector
Chen Du
Chunheng Wang
Yanna Wang
Cunzhao Shi
Baihua Xiao
35
42
0
15 Nov 2018
Automatic Classification of Defective Photovoltaic Module Cells in
  Electroluminescence Images
Automatic Classification of Defective Photovoltaic Module Cells in Electroluminescence Images
S. Deitsch
Vincent Christlein
S. Berger
C. Buerhop‐Lutz
Andreas Maier
F. Gallwitz
Christian Riess
46
357
0
08 Jul 2018
Segmentation of Photovoltaic Module Cells in Uncalibrated
  Electroluminescence Images
Segmentation of Photovoltaic Module Cells in Uncalibrated Electroluminescence Images
S. Deitsch
C. Buerhop‐Lutz
E. Sovetkin
A. Steland
Andreas Maier
F. Gallwitz
Christian Riess
111
63
0
18 Jun 2018
Do Better ImageNet Models Transfer Better?
Do Better ImageNet Models Transfer Better?
Simon Kornblith
Jonathon Shlens
Quoc V. Le
OOD
MLT
134
1,319
0
23 May 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
129
19,124
0
13 Jan 2018
Convolutional Neural Networks for Medical Image Analysis: Full Training
  or Fine Tuning?
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
Nima Tajbakhsh
Jae Y. Shin
S. Gurudu
R. T. Hurst
Christopher B. Kendall
Michael B. Gotway
Jianming Liang
150
2,508
0
02 Jun 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
846
14,493
0
07 Oct 2016
Understanding data augmentation for classification: when to warp?
Understanding data augmentation for classification: when to warp?
S. Wong
Adam Gatt
V. Stamatescu
Mark D Mcdonnell
62
904
0
28 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
624
36,599
0
25 Aug 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
281
10,149
0
16 Mar 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
114
7,448
0
24 Feb 2016
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN
  Architectures, Dataset Characteristics and Transfer Learning
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
Hoo-Chang Shin
H. Roth
Mingchen Gao
Le Lu
Ziyue Xu
Isabella Nogues
Jianhua Yao
D. Mollura
Ronald M. Summers
31
4,587
0
10 Feb 2016
Recent Advances in Convolutional Neural Networks
Recent Advances in Convolutional Neural Networks
Jiuxiang Gu
Zhenhua Wang
Jason Kuen
Lianyang Ma
Amir Shahroudy
...
Xingxing Wang
Li Wang
Gang Wang
Jianfei Cai
Tsuhan Chen
122
5,172
0
22 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
473
27,231
0
02 Dec 2015
Exploiting Local Features from Deep Networks for Image Retrieval
Exploiting Local Features from Deep Networks for Image Retrieval
Joe Yue-Hei Ng
Fan Yang
L. Davis
FAtt
58
412
0
20 Apr 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
804
149,474
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
920
99,991
0
04 Sep 2014
1