ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.08954
  4. Cited By
Multi-agent Reinforcement Learning Accelerated MCMC on Multiscale
  Inversion Problem

Multi-agent Reinforcement Learning Accelerated MCMC on Multiscale Inversion Problem

17 November 2020
Eric T. Chung
Y. Efendiev
W. Leung
Sai-Mang Pun
Zecheng Zhang
ArXivPDFHTML

Papers citing "Multi-agent Reinforcement Learning Accelerated MCMC on Multiscale Inversion Problem"

18 / 18 papers shown
Title
Multi-Agent Tensor Fusion for Contextual Trajectory Prediction
Multi-Agent Tensor Fusion for Contextual Trajectory Prediction
Tianyang Zhao
Yifei Xu
Mathew Monfort
Wongun Choi
Chris L. Baker
Yibiao Zhao
Yizhou Wang
Ying Nian Wu
43
394
0
09 Apr 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
96
2,391
0
13 Dec 2018
Off-Policy Deep Reinforcement Learning without Exploration
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRL
BDL
148
1,586
0
07 Dec 2018
Actor-Attention-Critic for Multi-Agent Reinforcement Learning
Actor-Attention-Critic for Multi-Agent Reinforcement Learning
Shariq Iqbal
Fei Sha
51
743
0
05 Oct 2018
Deep Multiscale Model Learning
Deep Multiscale Model Learning
Yating Wang
Siu Wun Cheung
Eric T. Chung
Y. Efendiev
Min Wang
AI4CE
34
80
0
13 Jun 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
139
5,121
0
26 Feb 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
203
18,685
0
20 Jul 2017
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Ryan J. Lowe
Yi Wu
Aviv Tamar
J. Harb
Pieter Abbeel
Igor Mordatch
113
4,441
0
07 Jun 2017
Counterfactual Multi-Agent Policy Gradients
Counterfactual Multi-Agent Policy Gradients
Jakob N. Foerster
Gregory Farquhar
Triantafyllos Afouras
Nantas Nardelli
Shimon Whiteson
49
2,053
0
24 May 2017
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
175
596
0
28 Feb 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
57
1,329
0
27 Feb 2017
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
51
1,130
0
20 Apr 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
159
8,805
0
04 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
56
3,742
0
20 Nov 2015
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
195
3,777
0
18 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
176
13,174
0
09 Sep 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
38
3,368
0
08 Jun 2015
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
128
4,275
0
18 Nov 2011
1