ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07931
  4. Cited By
Do Offline Metrics Predict Online Performance in Recommender Systems?

Do Offline Metrics Predict Online Performance in Recommender Systems?

7 November 2020
K. Krauth
Sarah Dean
Alex Zhao
Wenshuo Guo
Mihaela Curmei
Benjamin Recht
Michael I. Jordan
    OffRL
ArXivPDFHTML

Papers citing "Do Offline Metrics Predict Online Performance in Recommender Systems?"

6 / 6 papers shown
Title
Harm Mitigation in Recommender Systems under User Preference Dynamics
Harm Mitigation in Recommender Systems under User Preference Dynamics
Jerry Chee
Shankar Kalyanaraman
S. Ernala
Udi Weinsberg
Sarah Dean
Stratis Ioannidis
43
4
0
14 Jun 2024
Simulating News Recommendation Ecosystem for Fun and Profit
Simulating News Recommendation Ecosystem for Fun and Profit
Guangping Zhang
Dongsheng Li
Hansu Gu
Tun Lu
Li Shang
Ning Gu
16
0
0
23 May 2023
Preference Dynamics Under Personalized Recommendations
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
75
34
0
25 May 2022
T-RECS: A Simulation Tool to Study the Societal Impact of Recommender
  Systems
T-RECS: A Simulation Tool to Study the Societal Impact of Recommender Systems
Eli Lucherini
Matthew Sun
Amy A. Winecoff
Arvind Narayanan
31
23
0
19 Jul 2021
On component interactions in two-stage recommender systems
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
40
31
0
28 Jun 2021
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
314
0
30 Oct 2017
1