ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07923
  4. Cited By
Quantum deep field: data-driven wave function, electron density
  generation, and atomization energy prediction and extrapolation with machine
  learning

Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning

16 November 2020
Masashi Tsubaki
T. Mizoguchi
ArXivPDFHTML

Papers citing "Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning"

4 / 4 papers shown
Title
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep
  Neural Networks
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau
J. Spencer
A. G. Matthews
W. Foulkes
78
462
0
05 Sep 2019
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
64
606
0
09 Sep 2016
Molecular Graph Convolutions: Moving Beyond Fingerprints
Molecular Graph Convolutions: Moving Beyond Fingerprints
S. Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick F. Riley
GNN
137
1,449
0
02 Mar 2016
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
179
1,590
0
12 Sep 2011
1