ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07792
  4. Cited By
Training Strategies and Data Augmentations in CNN-based DeepFake Video
  Detection

Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection

16 November 2020
Luca Bondi
E. D. Cannas
Paolo Bestagini
Stefano Tubaro
ArXivPDFHTML

Papers citing "Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection"

11 / 11 papers shown
Title
Detection Based Part-level Articulated Object Reconstruction from Single RGBD Image
Detection Based Part-level Articulated Object Reconstruction from Single RGBD Image
Yuki Kawana
Tatsuya Harada
43
0
0
04 Apr 2025
Fake It till You Make It: Curricular Dynamic Forgery Augmentations
  towards General Deepfake Detection
Fake It till You Make It: Curricular Dynamic Forgery Augmentations towards General Deepfake Detection
Yuzhen Lin
Wentang Song
Bin Li
Yuezun Li
Jiangqun Ni
Han Chen
Qiushi Li
34
13
0
22 Sep 2024
Beyond the Prior Forgery Knowledge: Mining Critical Clues for General
  Face Forgery Detection
Beyond the Prior Forgery Knowledge: Mining Critical Clues for General Face Forgery Detection
Anwei Luo
Chen Kong
Jiwu Huang
Yongjian Hu
Xiangui Kang
Alex C. Kot
AAML
35
39
0
24 Apr 2023
Fighting Malicious Media Data: A Survey on Tampering Detection and
  Deepfake Detection
Fighting Malicious Media Data: A Survey on Tampering Detection and Deepfake Detection
Junke Wang
Zhenxin Li
Chao Zhang
Jingjing Chen
Zuxuan Wu
Larry S. Davis
Yueping Jiang
AAML
37
5
0
12 Dec 2022
Implicit Identity Leakage: The Stumbling Block to Improving Deepfake
  Detection Generalization
Implicit Identity Leakage: The Stumbling Block to Improving Deepfake Detection Generalization
S. Dong
Jin Wang
Renhe Ji
Jiajun Liang
Haoqiang Fan
Zheng Ge
40
109
0
26 Oct 2022
Quantitative Metrics for Evaluating Explanations of Video DeepFake
  Detectors
Quantitative Metrics for Evaluating Explanations of Video DeepFake Detectors
Federico Baldassarre
Quentin Debard
Gonzalo Fiz Pontiveros
Tri Kurniawan Wijaya
44
4
0
07 Oct 2022
CORE: Consistent Representation Learning for Face Forgery Detection
CORE: Consistent Representation Learning for Face Forgery Detection
Yu-Shu Ni
Depu Meng
Changqian Yu
Chengbin Quan
Dongchun Ren
Youjian Zhao
CVBM
CLL
39
62
0
06 Jun 2022
An Overview of Recent Work in Media Forensics: Methods and Threats
An Overview of Recent Work in Media Forensics: Methods and Threats
Kratika Bhagtani
A. Yadav
Emily R. Bartusiak
Ziyue Xiang
Ruiting Shao
Sriram Baireddy
Edward J. Delp
AAML
47
25
0
26 Apr 2022
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Felix Juefei Xu
Run Wang
Yihao Huang
Qing-Wu Guo
Lei Ma
Yang Liu
AAML
33
130
0
27 Feb 2021
Towards Solving the DeepFake Problem : An Analysis on Improving DeepFake
  Detection using Dynamic Face Augmentation
Towards Solving the DeepFake Problem : An Analysis on Improving DeepFake Detection using Dynamic Face Augmentation
Sowmen Das
Selim S. Seferbekov
Arup Datta
Md. Saiful Islam
Md Ruhul Amin
CVBM
36
64
0
18 Feb 2021
Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics
Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics
Yuezun Li
Xin Yang
Pu Sun
H. Qi
Siwei Lyu
149
1,046
0
27 Sep 2019
1