ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06898
  4. Cited By
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly
  imbalanced binary and categorical data

Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical data

13 November 2020
Gregor Zens
Sylvia Fruhwirth-Schnatter
Helga Wagner
    SyDa
ArXivPDFHTML

Papers citing "Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical data"

7 / 7 papers shown
Title
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression
Filippo Ascolani
Giacomo Zanella
60
0
0
20 May 2025
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
53
2
0
29 Aug 2024
Efficient Bayesian Modeling of Binary and Categorical Data in R: The UPG
  Package
Efficient Bayesian Modeling of Binary and Categorical Data in R: The UPG Package
Gregor Zens
Sylvia Fruhwirth-Schnatter
Helga Wagner
SyDa
19
5
0
07 Jan 2021
A fresh take on 'Barker dynamics' for MCMC
A fresh take on 'Barker dynamics' for MCMC
Max Hird
Samuel Livingstone
Giacomo Zanella
53
9
0
17 Dec 2020
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
63
232
0
11 Jul 2016
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
46
76
0
29 Jun 2015
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
113
4,275
0
18 Nov 2011
1