ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06485
  4. Cited By
Fairness and Robustness in Invariant Learning: A Case Study in Toxicity
  Classification

Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification

12 November 2020
Robert Adragna
Elliot Creager
David Madras
R. Zemel
    OOD
    FaML
ArXivPDFHTML

Papers citing "Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification"

15 / 15 papers shown
Title
Designing Long-term Group Fair Policies in Dynamical Systems
Designing Long-term Group Fair Policies in Dynamical Systems
Miriam Rateike
Isabel Valera
Patrick Forré
33
4
0
21 Nov 2023
Function Composition in Trustworthy Machine Learning: Implementation
  Choices, Insights, and Questions
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
K. Ramamurthy
Kush R. Varshney
30
1
0
17 Feb 2023
Learning Optimal Features via Partial Invariance
Learning Optimal Features via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
26
2
0
28 Jan 2023
Fairness via Adversarial Attribute Neighbourhood Robust Learning
Fairness via Adversarial Attribute Neighbourhood Robust Learning
Q. Qi
Shervin Ardeshir
Yi Tian Xu
Tianbao Yang
40
0
0
12 Oct 2022
Fairness and robustness in anti-causal prediction
Fairness and robustness in anti-causal prediction
Maggie Makar
Alexander DÁmour
OOD
36
10
0
20 Sep 2022
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
Abdulaziz A. Almuzaini
C. Bhatt
David M. Pennock
V. Singh
FaML
30
10
0
14 Jun 2022
Challenges in Applying Explainability Methods to Improve the Fairness of
  NLP Models
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
21
36
0
08 Jun 2022
De-biasing "bias" measurement
De-biasing "bias" measurement
K. Lum
Yunfeng Zhang
Amanda Bower
15
27
0
11 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of
  Explanations
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
78
0
06 May 2022
Feature robustness and sex differences in medical imaging: a case study
  in MRI-based Alzheimer's disease detection
Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer's disease detection
Eike Petersen
Aasa Feragen
Maria Luise da Costa Zemsch
A. Henriksen
Oskar Eiler Wiese Christensen
M. Ganz
OOD
21
27
0
04 Apr 2022
Balancing Fairness and Robustness via Partial Invariance
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
36
1
0
17 Dec 2021
Causal Inference in Natural Language Processing: Estimation, Prediction,
  Interpretation and Beyond
Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond
Amir Feder
Katherine A. Keith
Emaad A. Manzoor
Reid Pryzant
Dhanya Sridhar
...
Roi Reichart
Margaret E. Roberts
Brandon M Stewart
Victor Veitch
Diyi Yang
CML
41
234
0
02 Sep 2021
An Empirical Framework for Domain Generalization in Clinical Settings
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
26
59
0
20 Mar 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
62
1,377
0
14 Dec 2020
Empirical Analysis of Multi-Task Learning for Reducing Model Bias in
  Toxic Comment Detection
Empirical Analysis of Multi-Task Learning for Reducing Model Bias in Toxic Comment Detection
Ameya Vaidya
Feng Mai
Yue Ning
112
21
0
21 Sep 2019
1