Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.06376
Cited By
Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning
12 November 2020
Peichen Xie
Xuanle Ren
Guangyu Sun
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning"
8 / 8 papers shown
Title
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
161
396
0
08 Jun 2018
Chiron: Privacy-preserving Machine Learning as a Service
T. Hunt
Congzheng Song
Reza Shokri
Vitaly Shmatikov
Emmett Witchel
35
201
0
15 Mar 2018
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
Tianqi Chen
T. Moreau
Ziheng Jiang
Lianmin Zheng
Eddie Q. Yan
...
Leyuan Wang
Yuwei Hu
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
148
374
0
12 Feb 2018
Gazelle: A Low Latency Framework for Secure Neural Network Inference
Chiraag Juvekar
Vinod Vaikuntanathan
A. Chandrakasan
46
889
0
16 Jan 2018
DeepSecure: Scalable Provably-Secure Deep Learning
B. Rouhani
M. Riazi
F. Koushanfar
FedML
50
413
0
24 May 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
207
4,626
0
16 Apr 2017
SGXIO: Generic Trusted I/O Path for Intel SGX
Samuel Weiser
M. Werner
UQCV
47
95
0
04 Jan 2017
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.8K
193,426
0
10 Dec 2015
1