ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.05704
  4. Cited By
EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
  Labels

EvidentialMix: Learning with Combined Open-set and Closed-set Noisy Labels

11 November 2020
Ragav Sachdeva
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
    NoLa
ArXivPDFHTML

Papers citing "EvidentialMix: Learning with Combined Open-set and Closed-set Noisy Labels"

13 / 13 papers shown
Title
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
105
1,029
0
18 Feb 2020
SELF: Learning to Filter Noisy Labels with Self-Ensembling
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
83
316
0
04 Oct 2019
NLNL: Negative Learning for Noisy Labels
NLNL: Negative Learning for Noisy Labels
Youngdong Kim
Junho Yim
Juseung Yun
Junmo Kim
NoLa
49
276
0
19 Aug 2019
Robust Inference via Generative Classifiers for Handling Noisy Labels
Robust Inference via Generative Classifiers for Handling Noisy Labels
Kimin Lee
Sukmin Yun
Kibok Lee
Honglak Lee
Yue Liu
Jinwoo Shin
NoLa
82
139
0
31 Jan 2019
How does Disagreement Help Generalization against Label Corruption?
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
65
783
0
14 Jan 2019
Learning to Learn from Noisy Labeled Data
Learning to Learn from Noisy Labeled Data
Junnan Li
Yongkang Wong
Qi Zhao
Mohan Kankanhalli
NoLa
62
333
0
13 Dec 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
177
996
0
05 Jun 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
143
1,426
0
24 Mar 2018
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
98
1,453
0
14 Dec 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR
  datasets
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSeg
OOD
161
647
0
27 Jul 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
339
4,626
0
10 Nov 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,184
0
16 Mar 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
1