ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.04709
  4. Cited By
f-IRL: Inverse Reinforcement Learning via State Marginal Matching

f-IRL: Inverse Reinforcement Learning via State Marginal Matching

9 November 2020
Tianwei Ni
Harshit S. Sikchi
Yufei Wang
Tejus Gupta
Lisa Lee
Benjamin Eysenbach
ArXivPDFHTML

Papers citing "f-IRL: Inverse Reinforcement Learning via State Marginal Matching"

26 / 26 papers shown
Title
On the Effective Horizon of Inverse Reinforcement Learning
On the Effective Horizon of Inverse Reinforcement Learning
Yiqing Xu
Finale Doshi-Velez
David Hsu
81
0
0
21 Feb 2025
On Reward Transferability in Adversarial Inverse Reinforcement Learning: Insights from Random Matrix Theory
On Reward Transferability in Adversarial Inverse Reinforcement Learning: Insights from Random Matrix Theory
Yangchun Zhang
Wang Zhou
Yirui Zhou
75
0
0
31 Dec 2024
Energy-Based Imitation Learning
Energy-Based Imitation Learning
Minghuan Liu
Tairan He
Minkai Xu
Weinan Zhang
42
48
0
20 Apr 2020
State Alignment-based Imitation Learning
State Alignment-based Imitation Learning
Fangchen Liu
Z. Ling
Tongzhou Mu
Hao Su
43
93
0
21 Nov 2019
A Divergence Minimization Perspective on Imitation Learning Methods
A Divergence Minimization Perspective on Imitation Learning Methods
Seyed Kamyar Seyed Ghasemipour
R. Zemel
S. Gu
67
249
0
06 Nov 2019
Efficient Exploration via State Marginal Matching
Efficient Exploration via State Marginal Matching
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric Xing
Sergey Levine
Ruslan Salakhutdinov
104
244
0
12 Jun 2019
Imitation Learning as $f$-Divergence Minimization
Imitation Learning as fff-Divergence Minimization
Liyiming Ke
Sanjiban Choudhury
Matt Barnes
Wen Sun
Gilwoo Lee
S. Srinivasa
VLM
54
161
0
30 May 2019
Random Expert Distillation: Imitation Learning via Expert Policy Support
  Estimation
Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation
Ruohan Wang
C. Ciliberto
P. Amadori
Y. Demiris
52
62
0
16 May 2019
Learning agile and dynamic motor skills for legged robots
Learning agile and dynamic motor skills for legged robots
Jemin Hwangbo
Joonho Lee
Alexey Dosovitskiy
Dario Bellicoso
Vassilios Tsounis
V. Koltun
Marco Hutter
103
1,304
0
24 Jan 2019
Adversarial Imitation via Variational Inverse Reinforcement Learning
Adversarial Imitation via Variational Inverse Reinforcement Learning
A. H. Qureshi
Byron Boots
Michael C. Yip
52
61
0
17 Sep 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
73
671
0
02 May 2018
Safe Exploration in Continuous Action Spaces
Safe Exploration in Continuous Action Spaces
Gal Dalal
Krishnamurthy Dvijotham
Matej Vecerík
Todd Hester
Cosmin Paduraru
Yuval Tassa
48
439
0
26 Jan 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
284
8,313
0
04 Jan 2018
Learning Robust Rewards with Adversarial Inverse Reinforcement Learning
Learning Robust Rewards with Adversarial Inverse Reinforcement Learning
Justin Fu
Katie Z Luo
Sergey Levine
118
749
0
30 Oct 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
116
1,946
0
19 Sep 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
721
0
24 May 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
166
4,825
0
26 Jan 2017
A Connection between Generative Adversarial Networks, Inverse
  Reinforcement Learning, and Energy-Based Models
A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models
Chelsea Finn
Paul Christiano
Pieter Abbeel
Sergey Levine
OffRL
AI4CE
GAN
62
353
0
11 Nov 2016
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
131
3,101
0
10 Jun 2016
Cooperative Inverse Reinforcement Learning
Cooperative Inverse Reinforcement Learning
Dylan Hadfield-Menell
Anca Dragan
Pieter Abbeel
Stuart J. Russell
65
645
0
09 Jun 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
204
5,073
0
05 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
131
1,654
0
02 Jun 2016
Analysis of k-Nearest Neighbor Distances with Application to Entropy
  Estimation
Analysis of k-Nearest Neighbor Distances with Application to Entropy Estimation
Shashank Singh
Barnabás Póczós
29
35
0
28 Mar 2016
Guided Cost Learning: Deep Inverse Optimal Control via Policy
  Optimization
Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization
Chelsea Finn
Sergey Levine
Pieter Abbeel
108
946
0
01 Mar 2016
Maximum Entropy Deep Inverse Reinforcement Learning
Maximum Entropy Deep Inverse Reinforcement Learning
Markus Wulfmeier
Peter Ondruska
Ingmar Posner
OOD
66
404
0
17 Jul 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
274
6,755
0
19 Feb 2015
1