ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.04147
  4. Cited By
A Computationally Efficient Classification Algorithm in Posterior Drift
  Model: Phase Transition and Minimax Adaptivity

A Computationally Efficient Classification Algorithm in Posterior Drift Model: Phase Transition and Minimax Adaptivity

9 November 2020
Ruiqi Liu
Kexuan Li
Zuofeng Shang
ArXiv (abs)PDFHTML

Papers citing "A Computationally Efficient Classification Algorithm in Posterior Drift Model: Phase Transition and Minimax Adaptivity"

9 / 9 papers shown
Title
Transfer Learning for Nonparametric Classification: Minimax Rate and
  Adaptive Classifier
Transfer Learning for Nonparametric Classification: Minimax Rate and Adaptive Classifier
AI T.TONYC
EI Hongjiw
50
98
0
07 Jun 2019
A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation
A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation
Clayton Scott
65
36
0
03 Oct 2018
Algorithms and Theory for Multiple-Source Adaptation
Algorithms and Theory for Multiple-Source Adaptation
Judy Hoffman
M. Mohri
Ningshan Zhang
OOD
69
172
0
20 May 2018
Marginal Singularity, and the Benefits of Labels in Covariate-Shift
Marginal Singularity, and the Benefits of Labels in Covariate-Shift
Samory Kpotufe
Guillaume Martinet
143
96
0
05 Mar 2018
Adaptivity to Noise Parameters in Nonparametric Active Learning
Adaptivity to Noise Parameters in Nonparametric Active Learning
A. Locatelli
Alexandra Carpentier
Samory Kpotufe
44
30
0
16 Mar 2017
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with
  Minimax Optimal Rates
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
328
379
0
22 May 2013
Classification with Asymmetric Label Noise: Consistency and Maximal
  Denoising
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising
Gilles Blanchard
Marek Flaska
G. Handy
Sara Pozzi
Clayton Scott
NoLa
108
244
0
05 Mar 2013
Noise Tolerance under Risk Minimization
Noise Tolerance under Risk Minimization
Naresh Manwani
S. M. I. P. S. Sastry
NoLa
186
277
0
24 Sep 2011
Fast learning rates for plug-in classifiers
Fast learning rates for plug-in classifiers
Jean-Yves Audibert
Alexandre B. Tsybakov
584
469
0
17 Aug 2007
1