ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03958
18
3

FlowCaps: Optical Flow Estimation with Capsule Networks For Action Recognition

8 November 2020
Vinoj Jayasundara
D. Roy
Basura Fernando
    3DPC
ArXivPDFHTML
Abstract

Capsule networks (CapsNets) have recently shown promise to excel in most computer vision tasks, especially pertaining to scene understanding. In this paper, we explore CapsNet's capabilities in optical flow estimation, a task at which convolutional neural networks (CNNs) have already outperformed other approaches. We propose a CapsNet-based architecture, termed FlowCaps, which attempts to a) achieve better correspondence matching via finer-grained, motion-specific, and more-interpretable encoding crucial for optical flow estimation, b) perform better-generalizable optical flow estimation, c) utilize lesser ground truth data, and d) significantly reduce the computational complexity in achieving good performance, in comparison to its CNN-counterparts.

View on arXiv
Comments on this paper