ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03591
  4. Cited By
Domain adaptation techniques for improved cross-domain study of galaxy
  mergers
v1v2v3 (latest)

Domain adaptation techniques for improved cross-domain study of galaxy mergers

6 November 2020
A. Ćiprijanović
Diana Kafkes
S. Jenkins
K. Downey
G. Perdue
Sandeep Madireddy
T. Johnston
Brian D. Nord
    OOD
ArXiv (abs)PDFHTML

Papers citing "Domain adaptation techniques for improved cross-domain study of galaxy mergers"

3 / 3 papers shown
Title
DeepAdversaries: Examining the Robustness of Deep Learning Models for
  Galaxy Morphology Classification
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
A. Ćiprijanović
Diana Kafkes
Gregory F. Snyder
F. Sánchez
G. Perdue
K. Pedro
Brian D. Nord
Sandeep Madireddy
Stefan M. Wild
AAML
82
17
0
28 Dec 2021
Can semi-supervised learning reduce the amount of manual labelling
  required for effective radio galaxy morphology classification?
Can semi-supervised learning reduce the amount of manual labelling required for effective radio galaxy morphology classification?
I. V. Slijepcevic
A. Scaife
26
2
0
08 Nov 2021
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
  using Deep Learning
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts using Deep Learning
Dimitrios Tanoglidis
A. Ćiprijanović
A. Drlica-Wagner
61
16
0
24 Nov 2020
1