ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03178
  4. Cited By
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
v1v2 (latest)

Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?

6 November 2020
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?"

18 / 18 papers shown
Title
Active Fine-Tuning of Multi-Task Policies
Active Fine-Tuning of Multi-Task Policies
Marco Bagatella
Jonas Hübotter
Georg Martius
Andreas Krause
149
0
0
07 Oct 2024
Making Better Use of Unlabelled Data in Bayesian Active Learning
Making Better Use of Unlabelled Data in Bayesian Active Learning
Freddie Bickford-Smith
Adam Foster
Tom Rainforth
110
4
0
26 Apr 2024
Active Few-Shot Fine-Tuning
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
98
1
0
13 Feb 2024
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
211
1
0
10 Oct 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
116
28
0
14 Sep 2023
BatchGFN: Generative Flow Networks for Batch Active Learning
BatchGFN: Generative Flow Networks for Batch Active Learning
Shreshth A. Malik
Salem Lahlou
Andrew Jesson
Moksh Jain
Nikolay Malkin
T. Deleu
Yoshua Bengio
Y. Gal
AI4CE
68
2
0
26 Jun 2023
Prediction-Oriented Bayesian Active Learning
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
87
36
0
17 Apr 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian
  Experimental Design
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
100
3
0
27 Feb 2023
Unifying Approaches in Active Learning and Active Sampling via Fisher
  Information and Information-Theoretic Quantities
Unifying Approaches in Active Learning and Active Sampling via Fisher Information and Information-Theoretic Quantities
Andreas Kirsch
Y. Gal
FedML
95
23
0
01 Aug 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
96
20
0
08 Jun 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian
  Inference, Active Learning, and Active Sampling
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCVBDL
97
3
0
18 May 2022
Evaluating High-Order Predictive Distributions in Deep Learning
Evaluating High-Order Predictive Distributions in Deep Learning
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Xiuyuan Lu
Benjamin Van Roy
81
10
0
28 Feb 2022
Benchmarking Uncertainty Quantification on Biosignal Classification
  Tasks under Dataset Shift
Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift
Tong Xia
Jing Han
Cecilia Mascolo
OOD
82
11
0
16 Dec 2021
The Neural Testbed: Evaluating Joint Predictions
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
94
22
0
09 Oct 2021
A framework for benchmarking uncertainty in deep regression
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
60
8
0
10 Sep 2021
From Predictions to Decisions: The Importance of Joint Predictive
  Distributions
From Predictions to Decisions: The Importance of Joint Predictive Distributions
Zheng Wen
Ian Osband
Chao Qin
Xiuyuan Lu
M. Ibrahimi
Vikranth Dwaracherla
Mohammad Asghari
Benjamin Van Roy
UQCV
91
22
0
20 Jul 2021
Epistemic Neural Networks
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCVBDL
134
109
0
19 Jul 2021
Test Distribution-Aware Active Learning: A Principled Approach Against
  Distribution Shift and Outliers
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OODTTA
74
22
0
22 Jun 2021
1