Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.03178
Cited By
v1
v2 (latest)
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
6 November 2020
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?"
18 / 18 papers shown
Title
Active Fine-Tuning of Multi-Task Policies
Marco Bagatella
Jonas Hübotter
Georg Martius
Andreas Krause
149
0
0
07 Oct 2024
Making Better Use of Unlabelled Data in Bayesian Active Learning
Freddie Bickford-Smith
Adam Foster
Tom Rainforth
110
4
0
26 Apr 2024
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
98
1
0
13 Feb 2024
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
211
1
0
10 Oct 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
116
28
0
14 Sep 2023
BatchGFN: Generative Flow Networks for Batch Active Learning
Shreshth A. Malik
Salem Lahlou
Andrew Jesson
Moksh Jain
Nikolay Malkin
T. Deleu
Yoshua Bengio
Y. Gal
AI4CE
68
2
0
26 Jun 2023
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
87
36
0
17 Apr 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
100
3
0
27 Feb 2023
Unifying Approaches in Active Learning and Active Sampling via Fisher Information and Information-Theoretic Quantities
Andreas Kirsch
Y. Gal
FedML
95
23
0
01 Aug 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
96
20
0
08 Jun 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCV
BDL
97
3
0
18 May 2022
Evaluating High-Order Predictive Distributions in Deep Learning
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Xiuyuan Lu
Benjamin Van Roy
81
10
0
28 Feb 2022
Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift
Tong Xia
Jing Han
Cecilia Mascolo
OOD
82
11
0
16 Dec 2021
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
94
22
0
09 Oct 2021
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
60
8
0
10 Sep 2021
From Predictions to Decisions: The Importance of Joint Predictive Distributions
Zheng Wen
Ian Osband
Chao Qin
Xiuyuan Lu
M. Ibrahimi
Vikranth Dwaracherla
Mohammad Asghari
Benjamin Van Roy
UQCV
91
22
0
20 Jul 2021
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
134
109
0
19 Jul 2021
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OOD
TTA
74
22
0
22 Jun 2021
1