ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03156
  4. Cited By
Wasserstein-based fairness interpretability framework for machine
  learning models

Wasserstein-based fairness interpretability framework for machine learning models

6 November 2020
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
    FAtt
ArXivPDFHTML

Papers citing "Wasserstein-based fairness interpretability framework for machine learning models"

6 / 6 papers shown
Title
Enforcing Fairness Where It Matters: An Approach Based on Difference-of-Convex Constraints
Enforcing Fairness Where It Matters: An Approach Based on Difference-of-Convex Constraints
Yutian He
Yankun Huang
Yao Yao
Qihang Lin
FaML
51
0
0
18 May 2025
True to the Model or True to the Data?
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDI
FAtt
147
166
0
29 Jun 2020
A robust algorithm for explaining unreliable machine learning survival
  models using the Kolmogorov-Smirnov bounds
A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds
M. Kovalev
Lev V. Utkin
AAML
68
31
0
05 May 2020
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
68
280
0
29 Oct 2019
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
222
4,312
0
07 Oct 2016
Certifying and removing disparate impact
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
194
1,986
0
11 Dec 2014
1