Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.02863
Cited By
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition
5 November 2020
Meike Nauta
Annemarie Jutte
Jesper C. Provoost
C. Seifert
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition"
15 / 15 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
49
0
0
24 Feb 2025
Leveraging Habitat Information for Fine-grained Bird Identification
Tin Nguyen
Anh Nguyen
Anh Nguyen
VLM
44
0
0
22 Dec 2023
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations
Chiyu Ma
Brandon Zhao
Chaofan Chen
Cynthia Rudin
24
26
0
28 Oct 2023
Natural Example-Based Explainability: a Survey
Antonin Poché
Lucas Hervier
M. Bakkay
XAI
26
11
0
05 Sep 2023
ICICLE: Interpretable Class Incremental Continual Learning
Dawid Rymarczyk
Joost van de Weijer
Bartosz Zieliñski
Bartlomiej Twardowski
CLL
29
28
0
14 Mar 2023
Stop overkilling simple tasks with black-box models and use transparent models instead
Matteo Rizzo
Matteo Marcuzzo
A. Zangari
A. Gasparetto
A. Albarelli
VLM
19
0
0
06 Feb 2023
Hierarchical Explanations for Video Action Recognition
Sadaf Gulshad
Teng Long
N. V. Noord
FAtt
18
6
0
01 Jan 2023
Towards Human-Interpretable Prototypes for Visual Assessment of Image Classification Models
Poulami Sinhamahapatra
Lena Heidemann
Maureen Monnet
Karsten Roscher
39
5
0
22 Nov 2022
Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT
Jiaheng Xie
Xiaohang Zhao
Xiang Liu
Xiao Fang
OOD
36
2
0
08 Nov 2022
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
Giang Nguyen
Mohammad Reza Taesiri
Anh Totti Nguyen
30
42
0
26 Jul 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
Jonathan Donnelly
A. Barnett
Chaofan Chen
3DH
25
127
0
29 Nov 2021
Toward a Unified Framework for Debugging Concept-based Models
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
20
4
0
23 Sep 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
71
262
0
03 Dec 2020
1