Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.01963
Cited By
A Scalable Approach for Privacy-Preserving Collaborative Machine Learning
3 November 2020
Jinhyun So
Başak Güler
A. Avestimehr
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Scalable Approach for Privacy-Preserving Collaborative Machine Learning"
9 / 9 papers shown
Title
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
45
23
0
20 Jul 2023
DReS-FL: Dropout-Resilient Secure Federated Learning for Non-IID Clients via Secret Data Sharing
Jiawei Shao
Yuchang Sun
Songze Li
Jun Zhang
OOD
44
38
0
06 Oct 2022
FedMCSA: Personalized Federated Learning via Model Components Self-Attention
Qianling Guo
Yong Qi
Saiyu Qi
Di Wu
Qian Li
FedML
21
9
0
23 Aug 2022
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards
Sebastian Shenghong Tay
Xinyi Xu
Chuan-Sheng Foo
Bryan Kian Hsiang Low
SyDa
24
32
0
17 Dec 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
43
71
0
27 Oct 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
35
64
0
30 Jul 2021
Towards Industrial Private AI: A two-tier framework for data and model security
Sunder Ali Khowaja
K. Dev
N. Qureshi
P. Khuwaja
L. Foschini
FedML
18
5
0
27 Jul 2021
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
27
289
0
11 Feb 2020
CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
22
114
0
02 Feb 2019
1