ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01689
  4. Cited By
Improved unsupervised physics-informed deep learning for intravoxel
  incoherent motion modeling and evaluation in pancreatic cancer patients

Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients

3 November 2020
Misha P. T. Kaandorp
S. Barbieri
R. Klaassen
H. Laarhoven
H. Crezee
P. T. While
A. Nederveen
O. Gurney-Champion
ArXivPDFHTML

Papers citing "Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients"

12 / 12 papers shown
Title
SCREENER: A general framework for task-specific experiment design in
  quantitative MRI
SCREENER: A general framework for task-specific experiment design in quantitative MRI
Tianshu Zheng
Zican Wang
T. Bray
Daniel C. Alexander
Dan Wu
Hui Zhang
25
0
0
06 Aug 2024
PINNs for Medical Image Analysis: A Survey
PINNs for Medical Image Analysis: A Survey
C. Banerjee
Kien Nguyen
Olivier Salvado
Truyen Tran
Clinton Fookes
AI4CE
37
1
0
02 Aug 2024
Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural
  Network
Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural Network
Zehuan Zhang
Matej Genci
Hongxiang Fan
A. Wetscherek
Wayne Luk
54
0
0
07 Jul 2024
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
  A review
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A review
Lingchao Mao
Hairong Wang
Leland S. Hu
Nhan L Tran
Peter D Canoll
Kristin R Swanson
Jing Li
32
6
0
12 Jan 2024
Probabilistic Physics-integrated Neural Differentiable Modeling for
  Isothermal Chemical Vapor Infiltration Process
Probabilistic Physics-integrated Neural Differentiable Modeling for Isothermal Chemical Vapor Infiltration Process
Deepak Akhare
Zeping Chen
R. Gulotty
Tengfei Luo
Jian-Xun Wang
AI4CE
19
5
0
13 Nov 2023
Rician likelihood loss for quantitative MRI using self-supervised deep
  learning
Rician likelihood loss for quantitative MRI using self-supervised deep learning
C. Parker
A. Schroder
Sean C. Epstein
James H. Cole
Daniel C. Alexander
Hui Zhang
15
2
0
13 Jul 2023
Physics-informed radial basis network (PIRBN): A local approximating
  neural network for solving nonlinear PDEs
Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear PDEs
Jinshuai Bai
Guirong Liu
Ashish Gupta
Laith Alzubaidi
Xinzhu Feng
Yuantong T. Gu
PINN
29
1
0
13 Apr 2023
Utilising physics-guided deep learning to overcome data scarcity
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
39
3
0
24 Nov 2022
Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data:
  Break Training Data Bottleneck in Artificial Intelligence
Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence
Chen Qian
Yuncheng Gao
Mingyang Han
Zi Wang
Dan Ruan
...
Meijin Lin
D. Guo
Jianjun Zhou
Meiyun Wang
Xiaobo Qu
DiffM
MedIm
OOD
26
0
0
20 Oct 2022
Fitting a Directional Microstructure Model to Diffusion-Relaxation MRI
  Data with Self-Supervised Machine Learning
Fitting a Directional Microstructure Model to Diffusion-Relaxation MRI Data with Self-Supervised Machine Learning
Jason P. Lim
Stefano B. Blumberg
Neil Narayan
Sean C. Epstein
Daniel C. Alexander
M. Palombo
Paddy J. Slator
DiffM
OOD
26
4
0
05 Oct 2022
SUPER-IVIM-DC: Intra-voxel incoherent motion based Fetal lung maturity
  assessment from limited DWI data using supervised learning coupled with
  data-consistency
SUPER-IVIM-DC: Intra-voxel incoherent motion based Fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency
Noam Korngut
Elad Rotman
O. Afacan
Sila Kurugol
Yael Zaffrani-Reznikov
S. Nemirovsky-Rotman
Simon Warfield
Moti Freiman
18
4
0
08 Jun 2022
Choice of training label matters: how to best use deep learning for
  quantitative MRI parameter estimation
Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation
Sean C. Epstein
T. Bray
M. Hall-Craggs
Hui Zhang
SSL
OOD
33
12
0
11 May 2022
1