ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01456
  4. Cited By
Frequency-compensated PINNs for Fluid-dynamic Design Problems

Frequency-compensated PINNs for Fluid-dynamic Design Problems

3 November 2020
Tongtao Zhang
Biswadip Dey
P. Kakkar
A. Dasgupta
Amit Chakraborty
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Frequency-compensated PINNs for Fluid-dynamic Design Problems"

3 / 3 papers shown
Title
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
49
0
14 Nov 2022
Physics-informed neural networks for modeling rate- and
  temperature-dependent plasticity
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora
P. Kakkar
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
44
19
0
20 Jan 2022
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
1