ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00639
  4. Cited By
Model-Agnostic Explanations using Minimal Forcing Subsets

Model-Agnostic Explanations using Minimal Forcing Subsets

1 November 2020
Xing Han
Joydeep Ghosh
    AAML
ArXivPDFHTML

Papers citing "Model-Agnostic Explanations using Minimal Forcing Subsets"

9 / 9 papers shown
Title
Efficient computation and analysis of distributional Shapley values
Efficient computation and analysis of distributional Shapley values
Yongchan Kwon
Manuel A. Rivas
James Zou
FAtt
TDI
96
61
0
02 Jul 2020
Neuron Shapley: Discovering the Responsible Neurons
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
45
110
0
23 Feb 2020
On the Accuracy of Influence Functions for Measuring Group Effects
On the Accuracy of Influence Functions for Measuring Group Effects
Pang Wei Koh
Kai-Siang Ang
H. Teo
Percy Liang
TDI
59
186
0
30 May 2019
Counterfactual Visual Explanations
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
58
510
0
16 Apr 2019
Explainable time series tweaking via irreversible and reversible
  temporal transformations
Explainable time series tweaking via irreversible and reversible temporal transformations
Isak Karlsson
J. Rebane
P. Papapetrou
Aristides Gionis
AI4TS
18
29
0
13 Sep 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
81
2,332
0
01 Nov 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
123
3,848
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
139
2,854
0
14 Mar 2017
Layer-wise Relevance Propagation for Neural Networks with Local
  Renormalization Layers
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
54
456
0
04 Apr 2016
1