ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00179
  4. Cited By
Combining Domain-Specific Meta-Learners in the Parameter Space for
  Cross-Domain Few-Shot Classification

Combining Domain-Specific Meta-Learners in the Parameter Space for Cross-Domain Few-Shot Classification

31 October 2020
Shuman Peng
Weilian Song
Martin Ester
ArXiv (abs)PDFHTML

Papers citing "Combining Domain-Specific Meta-Learners in the Parameter Space for Cross-Domain Few-Shot Classification"

20 / 20 papers shown
Title
Deep Learning for Cross-Domain Few-Shot Visual Recognition: A Survey
Deep Learning for Cross-Domain Few-Shot Visual Recognition: A Survey
Huali Xu
Shuaifeng Zhi
Shuzhou Sun
Vishal M. Patel
Li Liu
107
14
0
15 Mar 2023
Cross-Domain Few-Shot Classification via Learned Feature-Wise
  Transformation
Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation
Hung-Yu Tseng
Hsin-Ying Lee
Jia-Bin Huang
Ming-Hsuan Yang
77
392
0
23 Jan 2020
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio
Shao-Hua Sun
Hexiang Hu
Joseph J. Lim
93
218
0
30 Oct 2019
MxML: Mixture of Meta-Learners for Few-Shot Classification
MxML: Mixture of Meta-Learners for Few-Shot Classification
Minseop Park
Jungtaek Kim
Saehoon Kim
Yanbin Liu
Seungjin Choi
OODD
33
8
0
11 Apr 2019
A Closer Look at Few-shot Classification
A Closer Look at Few-shot Classification
Wei-Yu Chen
Yen-Cheng Liu
Z. Kira
Y. Wang
Jia-Bin Huang
114
1,767
0
08 Apr 2019
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few
  Examples
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
Eleni Triantafillou
Tyler Lixuan Zhu
Vincent Dumoulin
Pascal Lamblin
Utku Evci
...
Ross Goroshin
Carles Gelada
Kevin Swersky
Pierre-Antoine Manzagol
Hugo Larochelle
151
618
0
07 Mar 2019
Meta-Learning: A Survey
Meta-Learning: A Survey
Joaquin Vanschoren
FedMLOOD
69
762
0
08 Oct 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
144
1,371
0
16 Jul 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedMLMoMe
135
1,669
0
14 Mar 2018
Few-Shot Learning with Metric-Agnostic Conditional Embeddings
Few-Shot Learning with Metric-Agnostic Conditional Embeddings
Nathan Hilliard
Lawrence Phillips
Scott Howland
A. Yankov
Court D. Corley
Nathan Oken Hodas
SSL
72
159
0
12 Feb 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
301
4,050
0
16 Nov 2017
Few-Shot Learning Through an Information Retrieval Lens
Few-Shot Learning Through an Information Retrieval Lens
Eleni Triantafillou
R. Zemel
R. Urtasun
63
238
0
09 Jul 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
303
8,145
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,937
0
09 Mar 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNNAI4CE
101
1,068
0
02 Mar 2017
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
373
7,323
0
13 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,328
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
234
8,344
0
06 Nov 2014
1