Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.00050
Cited By
Dataset Meta-Learning from Kernel Ridge-Regression
30 October 2020
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dataset Meta-Learning from Kernel Ridge-Regression"
47 / 47 papers shown
Title
Diversity-Driven Generative Dataset Distillation Based on Diffusion Model with Self-Adaptive Memory
Mingzhuo Li
Guang Li
Jiafeng Mao
Takahiro Ogawa
Miki Haseyama
DD
198
0
0
26 May 2025
CONCORD: Concept-Informed Diffusion for Dataset Distillation
Jianyang Gu
Haonan Wang
Ruoxi Jia
Saeed Vahidian
Vyacheslav Kungurtsev
Wei Jiang
Yiran Chen
DiffM
DD
878
0
0
23 May 2025
Latent Video Dataset Distillation
Ning Li
Antai Andy Liu
Jingran Zhang
Justin Cui
DD
VGen
104
0
0
23 Apr 2025
A Large-Scale Study on Video Action Dataset Condensation
Yang Chen
Sheng Guo
Bo Zheng
Limin Wang
DD
133
2
0
13 Mar 2025
Graph Condensation: A Survey
Xin Gao
Junliang Yu
Wei Jiang
Tong Chen
Wentao Zhang
Hongzhi Yin
DD
231
20
0
28 Jan 2025
Elucidating the Design Space of Dataset Condensation
Shitong Shao
Zikai Zhou
Huanran Chen
Zhiqiang Shen
DD
106
9
0
20 Jan 2025
Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Kai Wang
Zekai Li
Zhi-Qi Cheng
Samir Khaki
A. Sajedi
Ramakrishna Vedantam
Konstantinos N. Plataniotis
Alexander G. Hauptmann
Yang You
DD
120
5
0
22 Oct 2024
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
S. Joshi
Jiayi Ni
Baharan Mirzasoleiman
DD
145
2
0
03 Oct 2024
Distilling Long-tailed Datasets
Zhenghao Zhao
Haoxuan Wang
Yuzhang Shang
Kai Wang
Yan Yan
DD
89
3
0
24 Aug 2024
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
102
2
0
13 Aug 2024
A Label is Worth a Thousand Images in Dataset Distillation
Tian Qin
Zhiwei Deng
David Alvarez-Melis
DD
156
12
0
15 Jun 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
106
7
0
22 May 2024
ATOM: Attention Mixer for Efficient Dataset Distillation
Samir Khaki
A. Sajedi
Kai Wang
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
106
3
0
02 May 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
95
8
0
15 Mar 2024
Disentangled Condensation for Large-scale Graphs
Zhenbang Xiao
Shunyu Liu
Yu Wang
Tongya Zheng
Mingli Song
Mingli Song
Tongya Zheng
DD
197
6
0
18 Jan 2024
DataDAM: Efficient Dataset Distillation with Attention Matching
A. Sajedi
Samir Khaki
Ehsan Amjadian
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
DD
106
64
0
29 Sep 2023
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Tao Feng
Jie Zhang
Peizheng Wang
Zhijie Wang
Shengyuan Pang
DD
108
0
0
29 May 2023
InstaHide: Instance-hiding Schemes for Private Distributed Learning
Yangsibo Huang
Zhao Song
Keqin Li
Sanjeev Arora
FedML
PICV
72
151
0
06 Oct 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
63
213
0
31 Jul 2020
Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
DD
78
110
0
15 Jun 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
109
495
0
10 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
73
232
0
06 Jun 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
44
90
0
04 Mar 2020
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
66
47
0
21 Jan 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
64
228
0
05 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
104
414
0
06 Nov 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
126
135
0
06 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
58
162
0
03 Oct 2019
Using Small Proxy Datasets to Accelerate Hyperparameter Search
Sam Shleifer
Eric Prokop
DD
36
22
0
12 Jun 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
193
922
0
26 Apr 2019
Meta-Learning with Differentiable Convex Optimization
Kwonjoon Lee
Subhransu Maji
Avinash Ravichandran
Stefano Soatto
91
1,267
0
07 Apr 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
157
743
0
19 Mar 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
180
1,097
0
18 Feb 2019
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
75
296
0
27 Nov 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
54
309
0
11 Oct 2018
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
85
270
0
16 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
236
3,191
0
20 Jun 2018
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
80
928
0
21 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
141
557
0
30 Apr 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
113
1,091
0
01 Nov 2017
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
269
8,114
0
15 Mar 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
169
2,878
0
14 Mar 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
189
6,109
0
01 Jul 2016
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
335
7,313
0
13 Jun 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
310
7,971
0
23 May 2016
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
205
944
0
11 Feb 2015
Convolutional Kernel Networks
Julien Mairal
Piotr Koniusz
Zaïd Harchaoui
Cordelia Schmid
87
380
0
12 Jun 2014
1