ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.16412
  4. Cited By
Empirical or Invariant Risk Minimization? A Sample Complexity
  Perspective

Empirical or Invariant Risk Minimization? A Sample Complexity Perspective

30 October 2020
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
    OOD
ArXivPDFHTML

Papers citing "Empirical or Invariant Risk Minimization? A Sample Complexity Perspective"

50 / 60 papers shown
Title
Feature Matching Intervention: Leveraging Observational Data for Causal Representation Learning
Haoze Li
Jun Xie
CML
56
0
0
05 Mar 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning
  Zero-Shot Models
Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning Zero-Shot Models
Kaican Li
Weiyan Xie
Yongxiang Huang
Didan Deng
Lanqing Hong
ZeLin Li
Ricardo Silva
N. Zhang
71
0
0
29 Nov 2024
FuseFL: One-Shot Federated Learning through the Lens of Causality with
  Progressive Model Fusion
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion
Zhenheng Tang
Yonggang Zhang
Peijie Dong
Y. Cheung
Amelie Chi Zhou
Bo Han
Xiaowen Chu
FedML
MoMe
AI4CE
49
6
0
27 Oct 2024
Compositional Risk Minimization
Compositional Risk Minimization
Divyat Mahajan
Mohammad Pezeshki
Ioannis Mitliagkas
Kartik Ahuja
Pascal Vincent
Pascal Vincent
26
3
0
08 Oct 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
53
1
0
18 Aug 2024
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
67
0
0
01 Jul 2024
Revisiting Spurious Correlation in Domain Generalization
Revisiting Spurious Correlation in Domain Generalization
Bin Qin
Jiangmeng Li
Yi Li
Xuesong Wu
Yupeng Wang
Jingyao Wang
Jianwen Cao
CML
44
1
0
17 Jun 2024
Domain Generalization Guided by Large-Scale Pre-Trained Priors
Domain Generalization Guided by Large-Scale Pre-Trained Priors
Zongbin Wang
Bin Pan
Shiyu Shen
Tianyang Shi
Zhenwei Shi
AI4CE
26
0
0
09 Jun 2024
Domain Agnostic Conditional Invariant Predictions for Domain
  Generalization
Domain Agnostic Conditional Invariant Predictions for Domain Generalization
Zongbin Wang
Bin Pan
Zhenwei Shi
OOD
42
0
0
09 Jun 2024
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Feng Chen
OOD
MLT
OODD
77
3
0
05 Jun 2024
Fine-tuning with Very Large Dropout
Fine-tuning with Very Large Dropout
Jianyu Zhang
Léon Bottou
44
1
0
01 Mar 2024
Enhancing Compositional Generalization via Compositional Feature
  Alignment
Enhancing Compositional Generalization via Compositional Feature Alignment
Haoxiang Wang
Haozhe Si
Huajie Shao
Han Zhao
40
1
0
05 Feb 2024
Invariant-Feature Subspace Recovery: A New Class of Provable Domain
  Generalization Algorithms
Invariant-Feature Subspace Recovery: A New Class of Provable Domain Generalization Algorithms
Haoxiang Wang
Gargi Balasubramaniam
Haozhe Si
Bo Li
Han Zhao
OOD
35
1
0
02 Nov 2023
Spurious Feature Diversification Improves Out-of-distribution
  Generalization
Spurious Feature Diversification Improves Out-of-distribution Generalization
Yong Lin
Lu Tan
Yifan Hao
Honam Wong
Hanze Dong
Weizhong Zhang
Yujiu Yang
Tong Zhang
OODD
30
24
0
29 Sep 2023
Invariant Learning via Probability of Sufficient and Necessary Causes
Invariant Learning via Probability of Sufficient and Necessary Causes
Mengyue Yang
Zhen Fang
Yonggang Zhang
Yali Du
Furui Liu
Jean-François Ton
Jianhong Wang
Jun Wang
OODD
43
13
0
22 Sep 2023
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph
  Contrastive Learning
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learning
Yun Zhu
Haizhou Shi
Zhenshuo Zhang
Siliang Tang
26
8
0
24 Jul 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
95
1
0
17 Jul 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
23
6
0
02 Jul 2023
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
Yihua Zhang
Pranay Sharma
Parikshit Ram
Min-Fong Hong
Kush R. Varshney
Sijia Liu
34
11
0
04 Mar 2023
Learning Optimal Features via Partial Invariance
Learning Optimal Features via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
26
2
0
28 Jan 2023
When Neural Networks Fail to Generalize? A Model Sensitivity Perspective
When Neural Networks Fail to Generalize? A Model Sensitivity Perspective
Jiajin Zhang
Hanqing Chao
Amit Dhurandhar
Pin-Yu Chen
A. Tajer
Yangyang Xu
Pingkun Yan
OOD
AAML
11
14
0
01 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
17
5
0
28 Nov 2022
Direct-Effect Risk Minimization for Domain Generalization
Direct-Effect Risk Minimization for Domain Generalization
Yuhui Li
Zejia Wu
Chao Zhang
Hongyang R. Zhang
OOD
37
0
0
26 Nov 2022
Trade-off between reconstruction loss and feature alignment for domain
  generalization
Trade-off between reconstruction loss and feature alignment for domain generalization
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
40
1
0
26 Oct 2022
Joint covariate-alignment and concept-alignment: a framework for domain
  generalization
Joint covariate-alignment and concept-alignment: a framework for domain generalization
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
24
4
0
01 Aug 2022
Diversity Boosted Learning for Domain Generalization with Large Number
  of Domains
Diversity Boosted Learning for Domain Generalization with Large Number of Domains
Xinlin Leng
Xiaoying Tang
Yatao Bian
AI4CE
OOD
17
0
0
28 Jul 2022
Equivariance and Invariance Inductive Bias for Learning from
  Insufficient Data
Equivariance and Invariance Inductive Bias for Learning from Insufficient Data
Tan Wang
Qianru Sun
Sugiri Pranata
J. Karlekar
Hanwang Zhang
SSL
39
19
0
25 Jul 2022
When Does Group Invariant Learning Survive Spurious Correlations?
When Does Group Invariant Learning Survive Spurious Correlations?
Yimeng Chen
Ruibin Xiong
Zhiming Ma
Yanyan Lan
OOD
CML
27
20
0
29 Jun 2022
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization
  Dilemma in Out-of-Distribution Generalization
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
11
33
0
15 Jun 2022
Regularization Penalty Optimization for Addressing Data Quality Variance
  in OoD Algorithms
Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms
Runpeng Yu
Hong Zhu
Kaican Li
Lanqing Hong
Rui Zhang
Nan Ye
Shao-Lun Huang
Xiuqiang He
26
6
0
12 Jun 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
35
3
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
28
8
0
29 May 2022
An Empirical Study on Distribution Shift Robustness From the Perspective
  of Pre-Training and Data Augmentation
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
Ziquan Liu
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
Xiangyang Ji
Antoni B. Chan
OOD
45
14
0
25 May 2022
Core Risk Minimization using Salient ImageNet
Core Risk Minimization using Salient ImageNet
Sahil Singla
Mazda Moayeri
S. Feizi
30
14
0
28 Mar 2022
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
OOD
CML
AI4TS
32
29
0
18 Mar 2022
ZIN: When and How to Learn Invariance Without Environment Partition?
ZIN: When and How to Learn Invariance Without Environment Partition?
Yong Lin
Shengyu Zhu
Lu Tan
Peng Cui
OOD
CML
11
64
0
11 Mar 2022
Minimax Regret Optimization for Robust Machine Learning under
  Distribution Shift
Minimax Regret Optimization for Robust Machine Learning under Distribution Shift
Alekh Agarwal
Tong Zhang
OOD
6
28
0
11 Feb 2022
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Bo-wen Li
Han Zhao
OOD
60
32
0
30 Jan 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
99
224
0
30 Jan 2022
Conditional entropy minimization principle for learning domain invariant
  representation features
Conditional entropy minimization principle for learning domain invariant representation features
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
27
7
0
25 Jan 2022
Balancing Fairness and Robustness via Partial Invariance
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
36
1
0
17 Dec 2021
Invariant Language Modeling
Invariant Language Modeling
Maxime Peyrard
Sarvjeet Ghotra
Martin Josifoski
Vidhan Agarwal
Barun Patra
Dean Carignan
Emre Kıcıman
Robert West
29
13
0
16 Oct 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
55
517
0
31 Aug 2021
Causal Attention for Unbiased Visual Recognition
Causal Attention for Unbiased Visual Recognition
Tan Wang
Chan Zhou
Qianru Sun
Hanwang Zhang
OOD
CML
32
108
0
19 Aug 2021
Near-Optimal Linear Regression under Distribution Shift
Near-Optimal Linear Regression under Distribution Shift
Qi Lei
Wei Hu
Jason D. Lee
OOD
27
40
0
23 Jun 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
26
32
0
18 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
248
0
11 Jun 2021
Towards a Theoretical Framework of Out-of-Distribution Generalization
Towards a Theoretical Framework of Out-of-Distribution Generalization
Haotian Ye
Chuanlong Xie
Tianle Cai
Ruichen Li
Zhenguo Li
Liwei Wang
OODD
OOD
61
104
0
08 Jun 2021
OoD-Bench: Quantifying and Understanding Two Dimensions of
  Out-of-Distribution Generalization
OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization
Nanyang Ye
Kaican Li
Haoyue Bai
Runpeng Yu
Lanqing Hong
Fengwei Zhou
Zhenguo Li
Jun Zhu
CML
OOD
40
106
0
07 Jun 2021
12
Next