ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.16263
  4. Cited By
Learning to Unknot

Learning to Unknot

28 October 2020
Sergei Gukov
James Halverson
Fabian Ruehle
P. Sułkowski
ArXiv (abs)PDFHTML

Papers citing "Learning to Unknot"

18 / 18 papers shown
Title
On the Learnability of Knot Invariants: Representation, Predictability, and Neural Similarity
On the Learnability of Knot Invariants: Representation, Predictability, and Neural Similarity
Audrey Lindsay
Fabian Ruehle
81
1
0
17 Feb 2025
Can Transformers Do Enumerative Geometry?
Can Transformers Do Enumerative Geometry?
Baran Hashemi
Roderic G. Corominas
Alessandro Giacchetto
542
5
0
27 Aug 2024
KAN: Kolmogorov-Arnold Networks
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
330
602
0
30 Apr 2024
Neural Network Field Theories: Non-Gaussianity, Actions, and Locality
Neural Network Field Theories: Non-Gaussianity, Actions, and Locality
M. Demirtaş
James Halverson
Anindita Maiti
M. Schwartz
Keegan Stoner
AI4CE
75
10
0
06 Jul 2023
Geometric deep learning approach to knot theory
Geometric deep learning approach to knot theory
Lennart Jaretzki
AI4CE
35
1
0
26 May 2023
Searching for ribbons with machine learning
Searching for ribbons with machine learning
Sergei Gukov
James Halverson
Ciprian Manolescu
Fabian Ruehle
97
13
0
18 Apr 2023
Machine Learning on generalized Complete Intersection Calabi-Yau
  Manifolds
Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds
W. Cui
Xing Gao
Juntao Wang
89
4
0
21 Sep 2022
Simplifying Polylogarithms with Machine Learning
Simplifying Polylogarithms with Machine Learning
Aurélien Dersy
M. Schwartz
Xiao-Yan Zhang
AI4CE
218
16
0
08 Jun 2022
Towards Understanding Grokking: An Effective Theory of Representation
  Learning
Towards Understanding Grokking: An Effective Theory of Representation Learning
Ziming Liu
O. Kitouni
Niklas Nolte
Eric J. Michaud
Max Tegmark
Mike Williams
AI4CE
112
154
0
20 May 2022
Intelligent Explorations of the String Theory Landscape
Intelligent Explorations of the String Theory Landscape
A. Constantin
LRM
87
5
0
17 Apr 2022
Cluster Algebras: Network Science and Machine Learning
Cluster Algebras: Network Science and Machine Learning
Pierre-Philippe Dechant
Yang-Hui He
Elli Heyes
Edward Hirst
133
12
0
25 Mar 2022
From the String Landscape to the Mathematical Landscape: a
  Machine-Learning Outlook
From the String Landscape to the Mathematical Landscape: a Machine-Learning Outlook
Yang-Hui He
121
5
0
12 Feb 2022
Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds
Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds
Per Berglund
Ben Campbell
Vishnu Jejjala
92
20
0
16 Dec 2021
Untangling Braids with Multi-agent Q-Learning
Untangling Braids with Multi-agent Q-Learning
Abdullah Khan
A. Vernitski
A. Lisitsa
AI4CE
43
6
0
29 Sep 2021
Heterotic String Model Building with Monad Bundles and Reinforcement
  Learning
Heterotic String Model Building with Monad Bundles and Reinforcement Learning
A. Constantin
T. R. Harvey
A. Lukas
60
24
0
16 Aug 2021
Neural Network Approximations for Calabi-Yau Metrics
Neural Network Approximations for Calabi-Yau Metrics
Vishnu Jejjala
D. M. Peña
Challenger Mishra
70
55
0
31 Dec 2020
Disentangling a Deep Learned Volume Formula
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
81
19
0
07 Dec 2020
Machine Learning Lie Structures & Applications to Physics
Machine Learning Lie Structures & Applications to Physics
Heng-Yu Chen
Yang-Hui He
Shailesh Lal
Suvajit Majumder
AI4CE
87
21
0
02 Nov 2020
1