ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15638
  4. Cited By
Abstract Value Iteration for Hierarchical Reinforcement Learning

Abstract Value Iteration for Hierarchical Reinforcement Learning

29 October 2020
Kishor Jothimurugan
Osbert Bastani
Rajeev Alur
ArXivPDFHTML

Papers citing "Abstract Value Iteration for Hierarchical Reinforcement Learning"

22 / 22 papers shown
Title
A Composable Specification Language for Reinforcement Learning Tasks
A Composable Specification Language for Reinforcement Learning Tasks
Kishor Jothimurugan
Rajeev Alur
Osbert Bastani
54
86
0
21 Aug 2020
Planning with Abstract Learned Models While Learning Transferable
  Subtasks
Planning with Abstract Learned Models While Learning Transferable Subtasks
J. Winder
Stephanie Milani
Matthew Landen
Erebus Oh
Shane Parr
S. Squire
Marie desJardins
Cynthia Matuszek
41
10
0
16 Dec 2019
Scalable methods for computing state similarity in deterministic Markov
  Decision Processes
Scalable methods for computing state similarity in deterministic Markov Decision Processes
Pablo Samuel Castro
66
136
0
21 Nov 2019
Graph Policy Gradients for Large Scale Robot Control
Graph Policy Gradients for Large Scale Robot Control
Arbaaz Khan
Ekaterina V. Tolstaya
Alejandro Ribeiro
Vijay Kumar
35
93
0
08 Jul 2019
Dynamic Real-time Multimodal Routing with Hierarchical Hybrid Planning
Dynamic Real-time Multimodal Routing with Hierarchical Hybrid Planning
Shushman Choudhury
Jacob P. Knickerbocker
Mykel J. Kochenderfer
36
17
0
05 Feb 2019
Natural Option Critic
Natural Option Critic
Saket Tiwari
Philip S. Thomas
47
22
0
04 Dec 2018
Near-Optimal Representation Learning for Hierarchical Reinforcement
  Learning
Near-Optimal Representation Learning for Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
57
210
0
02 Oct 2018
Approximate Exploration through State Abstraction
Approximate Exploration through State Abstraction
Adrien Ali Taïga
Aaron Courville
Marc G. Bellemare
20
13
0
29 Aug 2018
Learning Dexterous In-Hand Manipulation
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
125
1,874
0
01 Aug 2018
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement
  Learning with Trajectory Embeddings
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings
John D. Co-Reyes
YuXuan Liu
Abhishek Gupta
Benjamin Eysenbach
Pieter Abbeel
Sergey Levine
SSL
BDL
AIFin
55
145
0
07 Jun 2018
Data-Efficient Hierarchical Reinforcement Learning
Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
OffRL
94
807
0
21 May 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
169
5,168
0
26 Feb 2018
Diversity is All You Need: Learning Skills without a Reward Function
Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
89
1,083
0
16 Feb 2018
Deep Abstract Q-Networks
Deep Abstract Q-Networks
Melrose Roderick
Christopher Grimm
Stefanie Tellex
57
33
0
02 Oct 2017
A Laplacian Framework for Option Discovery in Reinforcement Learning
A Laplacian Framework for Option Discovery in Reinforcement Learning
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
78
262
0
02 Mar 2017
Generalizing Skills with Semi-Supervised Reinforcement Learning
Generalizing Skills with Semi-Supervised Reinforcement Learning
Chelsea Finn
Tianhe Yu
Justin Fu
Pieter Abbeel
Sergey Levine
OffRL
SSL
62
69
0
01 Dec 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
60
1,082
0
16 Sep 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
68
1,134
0
20 Apr 2016
Funnel Libraries for Real-Time Robust Feedback Motion Planning
Funnel Libraries for Real-Time Robust Feedback Motion Planning
Anirudha Majumdar
Russ Tedrake
72
369
0
15 Jan 2016
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
278
3,431
0
02 Apr 2015
Metrics for Finite Markov Decision Processes
Metrics for Finite Markov Decision Processes
N. Ferns
Prakash Panangaden
Doina Precup
74
320
0
11 Jul 2012
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
198
3,211
0
02 Nov 2010
1