ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15201
  4. Cited By
Forecasting Hamiltonian dynamics without canonical coordinates

Forecasting Hamiltonian dynamics without canonical coordinates

28 October 2020
A. Choudhary
J. Lindner
Elliott G. Holliday
Scott T. Miller
S. Sinha
W. Ditto
ArXivPDFHTML

Papers citing "Forecasting Hamiltonian dynamics without canonical coordinates"

3 / 3 papers shown
Title
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
50
8
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
40
28
0
09 Nov 2021
Adaptable Hamiltonian neural networks
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
30
25
0
25 Feb 2021
1