ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15157
14
67

Panoster: End-to-end Panoptic Segmentation of LiDAR Point Clouds

28 October 2020
Stefano Gasperini
M. N. Mahani
Alvaro Marcos-Ramiro
Nassir Navab
Federico Tombari
    3DPC
ArXivPDFHTML
Abstract

Panoptic segmentation has recently unified semantic and instance segmentation, previously addressed separately, thus taking a step further towards creating more comprehensive and efficient perception systems. In this paper, we present Panoster, a novel proposal-free panoptic segmentation method for LiDAR point clouds. Unlike previous approaches relying on several steps to group pixels or points into objects, Panoster proposes a simplified framework incorporating a learning-based clustering solution to identify instances. At inference time, this acts as a class-agnostic segmentation, allowing Panoster to be fast, while outperforming prior methods in terms of accuracy. Without any post-processing, Panoster reached state-of-the-art results among published approaches on the challenging SemanticKITTI benchmark, and further increased its lead by exploiting heuristic techniques. Additionally, we showcase how our method can be flexibly and effectively applied on diverse existing semantic architectures to deliver panoptic predictions.

View on arXiv
Comments on this paper