ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14592
  4. Cited By
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions

Shapley Flow: A Graph-based Approach to Interpreting Model Predictions

27 October 2020
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
    FAtt
ArXivPDFHTML

Papers citing "Shapley Flow: A Graph-based Approach to Interpreting Model Predictions"

20 / 20 papers shown
Title
A New Approach to Backtracking Counterfactual Explanations: A Causal Framework for Efficient Model Interpretability
A New Approach to Backtracking Counterfactual Explanations: A Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
43
0
0
05 May 2025
From Abstract to Actionable: Pairwise Shapley Values for Explainable AI
From Abstract to Actionable: Pairwise Shapley Values for Explainable AI
Jiaxin Xu
Hung Chau
Angela Burden
TDI
50
0
0
18 Feb 2025
Counterfactual Effect Decomposition in Multi-Agent Sequential Decision Making
Counterfactual Effect Decomposition in Multi-Agent Sequential Decision Making
Stelios Triantafyllou
A. Sukovic
Yasaman Zolfimoselo
Goran Radanović
CML
35
0
0
16 Oct 2024
Improving the Weighting Strategy in KernelSHAP
Improving the Weighting Strategy in KernelSHAP
Lars Henry Berge Olsen
Martin Jullum
TDI
FAtt
71
2
0
07 Oct 2024
Theoretical Evaluation of Asymmetric Shapley Values for Root-Cause
  Analysis
Theoretical Evaluation of Asymmetric Shapley Values for Root-Cause Analysis
Domokos M. Kelen
M. Petreczky
Péter Kersch
András A. Benczúr
FAtt
37
3
0
15 Oct 2023
Beyond Single-Feature Importance with ICECREAM
Beyond Single-Feature Importance with ICECREAM
M.-J. Oesterle
Patrick Blobaum
Atalanti A. Mastakouri
Elke Kirschbaum
CML
35
1
0
19 Jul 2023
Shapley Chains: Extending Shapley Values to Classifier Chains
Shapley Chains: Extending Shapley Values to Classifier Chains
CE Ayad
Thomas Bonnier
Benjamin Bosch
Jesse Read
FAtt
TDI
13
2
0
30 Mar 2023
Approximation of group explainers with coalition structure using Monte
  Carlo sampling on the product space of coalitions and features
Approximation of group explainers with coalition structure using Monte Carlo sampling on the product space of coalitions and features
Konstandinos Kotsiopoulos
A. Miroshnikov
Khashayar Filom
Arjun Ravi Kannan
FAtt
23
3
0
17 Mar 2023
Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation
Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation
Andrew Herren
P. R. Hahn
FAtt
27
9
0
21 Aug 2022
Perception Visualization: Seeing Through the Eyes of a DNN
Perception Visualization: Seeing Through the Eyes of a DNN
Loris Giulivi
Mark J. Carman
Giacomo Boracchi
18
6
0
21 Apr 2022
The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
16
204
0
11 Feb 2022
Towards a Shapley Value Graph Framework for Medical peer-influence
Towards a Shapley Value Graph Framework for Medical peer-influence
J. Duell
M. Seisenberger
Gert Aarts
Shang-Ming Zhou
Xiuyi Fan
14
0
0
29 Dec 2021
AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
  Machine-Learning Black Box
AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the Machine-Learning Black Box
David Dandolo
Chiara Masiero
Mattia Carletti
Davide Dalle Pezze
Gian Antonio Susto
FAtt
LRM
24
22
0
23 Dec 2021
Exact Shapley Values for Local and Model-True Explanations of Decision
  Tree Ensembles
Exact Shapley Values for Local and Model-True Explanations of Decision Tree Ensembles
Thomas W. Campbell
H. Roder
R. Georgantas
J. Roder
FedML
TDI
FAtt
19
16
0
16 Dec 2021
Counterfactual Shapley Additive Explanations
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
26
49
0
27 Oct 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning
Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning
Jiahui Li
Kun Kuang
Baoxiang Wang
Furui Liu
Long Chen
Fei Wu
Jun Xiao
OffRL
17
60
0
01 Jun 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
27
32
0
25 May 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
44
176
0
07 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
241
0
21 Nov 2020
1