Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.13363
Cited By
Provable Memorization via Deep Neural Networks using Sub-linear Parameters
26 October 2020
Sejun Park
Jaeho Lee
Chulhee Yun
Jinwoo Shin
FedML
MDE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable Memorization via Deep Neural Networks using Sub-linear Parameters"
10 / 10 papers shown
Title
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
45
1
0
31 Dec 2024
On the Complexity of Neural Computation in Superposition
Micah Adler
Nir Shavit
115
3
0
05 Sep 2024
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
T. Kajitsuka
Issei Sato
31
16
0
26 Jul 2023
Memorization Capacity of Multi-Head Attention in Transformers
Sadegh Mahdavi
Renjie Liao
Christos Thrampoulidis
26
22
0
03 Jun 2023
Memorization Capacity of Neural Networks with Conditional Computation
Erdem Koyuncu
30
4
0
20 Mar 2023
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Z. Luo
26
10
0
21 Oct 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
46
20
0
31 Jan 2022
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
47
95
0
25 Jul 2020
Benefits of depth in neural networks
Matus Telgarsky
142
602
0
14 Feb 2016
1