ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13172
  4. Cited By
Unsupervised Super-Resolution: Creating High-Resolution Medical Images
  from Low-Resolution Anisotropic Examples

Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples

25 October 2020
Jörg Sander
B. D. de Vos
Ivana Išgum
    MedIm
ArXiv (abs)PDFHTML

Papers citing "Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples"

3 / 3 papers shown
Title
Brain MRI Super Resolution Using 3D Deep Densely Connected Neural
  Networks
Brain MRI Super Resolution Using 3D Deep Densely Connected Neural Networks
Yuhua Chen
Yibin Xie
Zhengwei Zhou
Feng Shi
A. Christodoulou
Debiao Li
SupR
59
231
0
08 Jan 2018
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac
  Image Enhancement and Segmentation
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation
Ozan Oktay
Enzo Ferrante
Konstantinos Kamnitsas
M. Heinrich
Wenjia Bai
...
T. Dawes
D. O’Regan
Bernhard Kainz
Ben Glocker
Daniel Rueckert
62
658
0
22 May 2017
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,707
0
15 Sep 2016
1