ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12636
  4. Cited By
Nonseparable Symplectic Neural Networks

Nonseparable Symplectic Neural Networks

23 October 2020
S. Xiong
Yunjin Tong
Xingzhe He
Shuqi Yang
Cheng Yang
Bo Zhu
ArXivPDFHTML

Papers citing "Nonseparable Symplectic Neural Networks"

11 / 11 papers shown
Title
Bayesian identification of nonseparable Hamiltonians with multiplicative
  noise using deep learning and reduced-order modeling
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
38
0
0
23 Jan 2024
Physics-Informed Learning Using Hamiltonian Neural Networks with Output
  Error Noise Models
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Bayesian Identification of Nonseparable Hamiltonian Systems Using
  Stochastic Dynamic Models
Bayesian Identification of Nonseparable Hamiltonian Systems Using Stochastic Dynamic Models
Harsh Sharma
Nicholas Galioto
Alex A. Gorodetsky
Boris Kramer
32
3
0
15 Sep 2022
VPNets: Volume-preserving neural networks for learning source-free
  dynamics
VPNets: Volume-preserving neural networks for learning source-free dynamics
Aiqing Zhu
Beibei Zhu
Jiawei Zhang
Yifa Tang
Jian-Dong Liu
26
3
0
29 Apr 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
22
28
0
09 Nov 2021
Symplectic Learning for Hamiltonian Neural Networks
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
13
34
0
22 Jun 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
422
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1