ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12527
  4. Cited By
Answering Open-Domain Questions of Varying Reasoning Steps from Text

Answering Open-Domain Questions of Varying Reasoning Steps from Text

23 October 2020
Peng Qi
Haejun Lee
OghenetegiriTGSido
Christopher D. Manning
    KELM
    RALM
    LRM
ArXivPDFHTML

Papers citing "Answering Open-Domain Questions of Varying Reasoning Steps from Text"

7 / 7 papers shown
Title
Synthetic Data Generation & Multi-Step RL for Reasoning & Tool Use
Synthetic Data Generation & Multi-Step RL for Reasoning & Tool Use
Anna Goldie
Azalia Mirhoseini
Hao Zhou
Irene Cai
Christopher D. Manning
SyDa
OffRL
ReLM
LRM
109
3
0
07 Apr 2025
Teaching Smaller Language Models To Generalise To Unseen Compositional
  Questions
Teaching Smaller Language Models To Generalise To Unseen Compositional Questions
Tim Hartill
N. Tan
Michael Witbrock
Patricia J. Riddle
ReLM
KELM
LRM
27
2
0
02 Aug 2023
Natural Language Reasoning, A Survey
Natural Language Reasoning, A Survey
Fei Yu
Hongbo Zhang
Prayag Tiwari
Benyou Wang
ReLM
LRM
44
49
0
26 Mar 2023
Enhancing Multi-modal and Multi-hop Question Answering via Structured
  Knowledge and Unified Retrieval-Generation
Enhancing Multi-modal and Multi-hop Question Answering via Structured Knowledge and Unified Retrieval-Generation
Qian Yang
Qian Chen
Wen Wang
Baotian Hu
Min Zhang
17
24
0
16 Dec 2022
MuSiQue: Multihop Questions via Single-hop Question Composition
MuSiQue: Multihop Questions via Single-hop Question Composition
H. Trivedi
Niranjan Balasubramanian
Tushar Khot
Ashish Sabharwal
LRM
15
224
0
02 Aug 2021
Answering Complex Open-domain Questions Through Iterative Query
  Generation
Answering Complex Open-domain Questions Through Iterative Query Generation
Peng Qi
Xiaowen Lin
L. Mehr
Zijian Wang
Christopher D. Manning
RALM
ReLM
LRM
173
117
0
15 Oct 2019
Revealing the Importance of Semantic Retrieval for Machine Reading at
  Scale
Revealing the Importance of Semantic Retrieval for Machine Reading at Scale
Yixin Nie
Songhe Wang
Mohit Bansal
RALM
156
134
0
17 Sep 2019
1