ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12191
  4. Cited By
Escape saddle points faster on manifolds via perturbed Riemannian
  stochastic recursive gradient

Escape saddle points faster on manifolds via perturbed Riemannian stochastic recursive gradient

23 October 2020
Andi Han
Junbin Gao
ArXivPDFHTML

Papers citing "Escape saddle points faster on manifolds via perturbed Riemannian stochastic recursive gradient"

2 / 2 papers shown
Title
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Andi Han
Pierre-Louis Poirion
Akiko Takeda
4
0
0
18 May 2025
Nonconvex Factorization and Manifold Formulations are Almost Equivalent
  in Low-rank Matrix Optimization
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
30
9
0
03 Aug 2021
1