ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12063
  4. Cited By
Explaining Neural Network Predictions for Functional Data Using
  Principal Component Analysis and Feature Importance

Explaining Neural Network Predictions for Functional Data Using Principal Component Analysis and Feature Importance

15 October 2020
Katherine Goode
Daniel Ries
J. Zollweg
ArXiv (abs)PDFHTML

Papers citing "Explaining Neural Network Predictions for Functional Data Using Principal Component Analysis and Feature Importance"

3 / 3 papers shown
Title
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
131
3,967
0
06 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,267
0
24 Jun 2017
Generative Models for Functional Data using Phase and Amplitude
  Separation
Generative Models for Functional Data using Phase and Amplitude Separation
J. D. Tucker
Wei Wu
Anuj Srivastava
68
191
0
08 Dec 2012
1