Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.11858
Cited By
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
22 October 2020
Andrea Agazzi
Jianfeng Lu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime"
32 / 32 papers shown
Title
Emergence of meta-stable clustering in mean-field transformer models
Giuseppe Bruno
Federico Pasqualotto
Andrea Agazzi
84
9
0
30 Oct 2024
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
57
109
0
16 Jul 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
83
188
0
24 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
269
11
0
08 Jun 2020
On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime
Stephan Wojtowytsch
MLT
97
50
0
27 May 2020
On the Global Convergence Rates of Softmax Policy Gradient Methods
Jincheng Mei
Chenjun Xiao
Csaba Szepesvári
Dale Schuurmans
121
292
0
13 May 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
112
338
0
11 Feb 2020
A Rigorous Framework for the Mean Field Limit of Multilayer Neural Networks
Phan-Minh Nguyen
H. Pham
AI4CE
64
81
0
30 Jan 2020
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kai Zhang
Zhuoran Yang
Tamer Basar
177
1,213
0
24 Nov 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
77
241
0
29 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
61
320
0
01 Aug 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
49
93
0
24 Jul 2019
The Barron Space and the Flow-induced Function Spaces for Neural Network Models
E. Weinan
Chao Ma
Lei Wu
71
110
0
18 Jun 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
31
8
0
27 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
45
243
0
27 Apr 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
200
1,099
0
18 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
48
321
0
12 Feb 2019
Analysis of a Two-Layer Neural Network via Displacement Convexity
Adel Javanmard
Marco Mondelli
Andrea Montanari
MLT
78
57
0
05 Jan 2019
Learning to Walk via Deep Reinforcement Learning
Tuomas Haarnoja
Sehoon Ha
Aurick Zhou
Jie Tan
George Tucker
Sergey Levine
100
438
0
26 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
102
833
0
19 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
178
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
183
769
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
242
1,462
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
192
1,134
0
09 Nov 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
193
244
0
12 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,270
0
04 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
256
3,194
0
20 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
204
735
0
24 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
81
858
0
18 Apr 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
290
8,329
0
04 Jan 2018
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum
Mohammad Norouzi
Kelvin Xu
Dale Schuurmans
156
471
0
28 Feb 2017
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
117
12,223
0
19 Dec 2013
1