ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11389
  4. Cited By
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data

UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data

22 October 2020
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
ArXivPDFHTML

Papers citing "UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data"

29 / 29 papers shown
Title
Deep Bayesian Gaussian Processes for Uncertainty Estimation in
  Electronic Health Records
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
46
36
0
23 Mar 2020
ConCare: Personalized Clinical Feature Embedding via Capturing the
  Healthcare Context
ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context
Liantao Ma
Chaohe Zhang
Yasha Wang
Wenjie Ruan
Jiantao Wang
Wen Tang
Xinyu Ma
Xin Gao
Junyi Gao
51
155
0
27 Nov 2019
Learning the Graphical Structure of Electronic Health Records with Graph
  Convolutional Transformer
Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
Edward Choi
Zhen Xu
Yujia Li
Michael W. Dusenberry
Gerardo Flores
Yuan Xue
Andrew M. Dai
MedIm
65
245
0
11 Jun 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
51
118
0
10 Jun 2019
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
99
123
0
10 Dec 2018
MiME: Multilevel Medical Embedding of Electronic Health Records for
  Predictive Healthcare
MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare
Edward Choi
Cao Xiao
Walter F. Stewart
Jimeng Sun
147
236
0
22 Oct 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
83
690
0
03 Jul 2018
Deep Mixed Effect Model using Gaussian Processes: A Personalized and
  Reliable Prediction for Healthcare
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
Ingyo Chung
Saehoon Kim
Juho Lee
Kwang Joon Kim
Sung Ju Hwang
Eunho Yang
BDL
FedML
56
16
0
05 Jun 2018
Personalized Gaussian Processes for Future Prediction of Alzheimer's
  Disease Progression
Personalized Gaussian Processes for Future Prediction of Alzheimer's Disease Progression
Kelly S. Peterson
Ognjen Rudovic
Ricardo Guerrero
Rosalind W. Picard
41
25
0
01 Dec 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
173
690
0
15 Nov 2017
Attend and Diagnose: Clinical Time Series Analysis using Attention
  Models
Attend and Diagnose: Clinical Time Series Analysis using Attention Models
Huan-Zhi Song
Deepta Rajan
Jayaraman J. Thiagarajan
A. Spanias
MLAU
83
453
0
10 Nov 2017
An Improved Multi-Output Gaussian Process RNN with Real-Time Validation
  for Early Sepsis Detection
An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection
Joseph D. Futoma
S. Hariharan
M. Sendak
Nathan Brajer
M. Clement
A. Bedoya
Cara O'Brien
Katherine A. Heller
56
127
0
19 Aug 2017
Dipole: Diagnosis Prediction in Healthcare via Attention-based
  Bidirectional Recurrent Neural Networks
Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks
Fenglong Ma
Radha Chitta
Jing Zhou
Quanzeng You
Tong Sun
Jing Gao
54
555
0
19 Jun 2017
Learning to Detect Sepsis with a Multitask Gaussian Process RNN
  Classifier
Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier
Joseph D. Futoma
S. Hariharan
Katherine A. Heller
58
173
0
13 Jun 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
83
420
0
24 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
788
5,806
0
05 Dec 2016
GRAM: Graph-based Attention Model for Healthcare Representation Learning
GRAM: Graph-based Attention Model for Healthcare Representation Learning
Edward Choi
M. T. Bahadori
Le Song
Walter F. Stewart
Jimeng Sun
GNN
94
675
0
21 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
104
267
0
01 Nov 2016
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse
  Time Attention Mechanism
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism
Edward Choi
M. T. Bahadori
Joshua A. Kulas
A. Schuetz
Walter F. Stewart
Jimeng Sun
AI4TS
109
1,245
0
19 Aug 2016
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks
Edward Choi
M. T. Bahadori
A. Schuetz
Walter F. Stewart
Jimeng Sun
141
1,100
0
18 Nov 2015
Learning to Diagnose with LSTM Recurrent Neural Networks
Learning to Diagnose with LSTM Recurrent Neural Networks
Zachary Chase Lipton
David C. Kale
Charles Elkan
R. Wetzel
81
1,106
0
11 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
238
885
0
06 Nov 2015
Thoughts on Massively Scalable Gaussian Processes
Thoughts on Massively Scalable Gaussian Processes
A. Wilson
Christoph Dann
H. Nickisch
80
110
0
05 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
769
9,302
0
06 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
61
513
0
03 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
165
273
0
24 Feb 2014
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
122
1,181
0
02 Nov 2012
Gaussian Process Regression Networks
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
127
192
0
19 Oct 2011
1