ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10201
  4. Cited By
Action-Conditional Recurrent Kalman Networks For Forward and Inverse
  Dynamics Learning

Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning

20 October 2020
Vaisakh Shaj
P. Becker
Le Chen
Harit Pandya
Niels van Duijkeren
C. J. Taylor
Marc Hanheide
Gerhard Neumann
    AI4CE
ArXivPDFHTML

Papers citing "Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning"

6 / 6 papers shown
Title
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
87
1
0
20 Feb 2025
Multi Time Scale World Models
Multi Time Scale World Models
Vaisakh Shaj
Saleh Gholam Zadeh
Ozan Demir
L. R. Douat
Gerhard Neumann
AI4CE
33
3
0
27 Oct 2023
Context-Conditional Navigation with a Learning-Based Terrain- and
  Robot-Aware Dynamics Model
Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model
Suresh Guttikonda
Jan Achterhold
Haolong Li
Joschka Boedecker
Joerg Stueckler
29
2
0
18 Jul 2023
Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic
  Motion
Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic Motion
Simon Guist
Jan Schneider
Hao Ma
Tianyu Cui
V. Berenz
...
Felix Gruninger
M. Muhlebach
J. Fiene
Bernhard Schölkopf
Le Chen
47
4
0
05 Jul 2023
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
  Compliant Impedance Control
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
Moritz Reuss
Niels van Duijkeren
R. Krug
P. Becker
Vaisakh Shaj
Gerhard Neumann
9
5
0
27 May 2022
1