ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09654
  4. Cited By
Semi-supervised Batch Active Learning via Bilevel Optimization

Semi-supervised Batch Active Learning via Bilevel Optimization

19 October 2020
Zalan Borsos
Marco Tagliasacchi
Andreas Krause
ArXivPDFHTML

Papers citing "Semi-supervised Batch Active Learning via Bilevel Optimization"

14 / 14 papers shown
Title
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
59
34
0
17 Mar 2022
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
55
230
0
06 Jun 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
41
227
0
05 Dec 2019
Combining MixMatch and Active Learning for Better Accuracy with Fewer
  Labels
Combining MixMatch and Active Learning for Better Accuracy with Fewer Labels
Shuang Song
David Berthelot
Afshin Rostamizadeh
43
33
0
02 Dec 2019
Consistency-based Semi-supervised Active Learning: Towards Minimizing
  Labeling Cost
Consistency-based Semi-supervised Active Learning: Towards Minimizing Labeling Cost
M. Gao
Zizhao Zhang
Guo-Ding Yu
Sercan O. Arik
L. Davis
Tomas Pfister
189
198
0
16 Oct 2019
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian
  Active Learning
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
Andreas Kirsch
Joost R. van Amersfoort
Y. Gal
FedML
35
620
0
19 Jun 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
112
3,009
0
06 May 2019
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
121
3,160
0
20 Jun 2018
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Pete Warden
36
1,599
0
09 Apr 2018
Virtual Adversarial Training: A Regularization Method for Supervised and
  Semi-Supervised Learning
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
98
2,724
0
13 Apr 2017
Practical Coreset Constructions for Machine Learning
Practical Coreset Constructions for Machine Learning
Olivier Bachem
Mario Lucic
Andreas Krause
42
185
0
19 Mar 2017
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
192
7,951
0
23 May 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
78
449
0
07 Feb 2016
Semi-Supervised Learning with Ladder Networks
Semi-Supervised Learning with Ladder Networks
Antti Rasmus
Harri Valpola
Mikko Honkala
Mathias Berglund
T. Raiko
SSL
54
1,369
0
09 Jul 2015
1