ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09622
  4. Cited By
Inferring respiratory and circulatory parameters from electrical
  impedance tomography with deep recurrent models

Inferring respiratory and circulatory parameters from electrical impedance tomography with deep recurrent models

19 October 2020
Nils Strodthoff
C. Strodthoff
T. Becher
N. Weiler
I. Frerichs
ArXivPDFHTML

Papers citing "Inferring respiratory and circulatory parameters from electrical impedance tomography with deep recurrent models"

2 / 2 papers shown
Title
A disciplined approach to neural network hyper-parameters: Part 1 --
  learning rate, batch size, momentum, and weight decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
208
1,020
0
26 Mar 2018
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
239
7,921
0
13 Jun 2015
1