ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09602
  4. Cited By
End-to-End Text-to-Speech using Latent Duration based on VQ-VAE

End-to-End Text-to-Speech using Latent Duration based on VQ-VAE

19 October 2020
Yusuke Yasuda
Xin Wang
Junichi Yamagishi
ArXivPDFHTML

Papers citing "End-to-End Text-to-Speech using Latent Duration based on VQ-VAE"

4 / 4 papers shown
Title
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
64
4
0
18 Oct 2024
Cross-Utterance Conditioned VAE for Speech Generation
Cross-Utterance Conditioned VAE for Speech Generation
Yong Li
Cheng Yu
Guangzhi Sun
Weiqin Zu
Zheng Tian
...
Wei Pan
Chao Zhang
Jun Wang
Yang Yang
Fanglei Sun
21
2
0
08 Sep 2023
U-DiT TTS: U-Diffusion Vision Transformer for Text-to-Speech
U-DiT TTS: U-Diffusion Vision Transformer for Text-to-Speech
Xin Jing
Yi Chang
Zijiang Yang
Jiang-jian Xie
Andreas Triantafyllopoulos
Bjoern W. Schuller
41
10
0
22 May 2023
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural HMMs are all you need (for high-quality attention-free TTS)
Shivam Mehta
Éva Székely
Jonas Beskow
G. Henter
34
18
0
30 Aug 2021
1