Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.09345
Cited By
A Framework to Learn with Interpretation
19 October 2020
Jayneel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
AI4CE
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Framework to Learn with Interpretation"
10 / 10 papers shown
Title
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
A. Newson
Florence dÁlché-Buc
SSL
63
1
0
01 Jul 2024
Prototypical Self-Explainable Models Without Re-training
Srishti Gautam
Ahcène Boubekki
Marina M.-C. Höhne
Michael C. Kampffmeyer
28
2
0
13 Dec 2023
Interpretability-Aware Vision Transformer
Yao Qiang
Chengyin Li
Prashant Khanduri
D. Zhu
ViT
82
7
0
14 Sep 2023
BELLA: Black box model Explanations by Local Linear Approximations
N. Radulovic
Albert Bifet
Fabian M. Suchanek
FAtt
34
1
0
18 May 2023
Posthoc Interpretation via Quantization
Francesco Paissan
Cem Subakan
Mirco Ravanelli
MQ
16
6
0
22 Mar 2023
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
Jayneel Parekh
Sanjeel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
G. Richard
16
22
0
23 Feb 2022
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
24
49
0
27 Aug 2021
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,684
0
28 Feb 2017
1